6 research outputs found

    Design of the device for magnetodynamic characterization of magnetic materials and nanostructures

    Get PDF
    Další rozvoj magnoniky, vědního oboru zabývajícího se fenoménem spinových vln, je spojen s výzkumem nových materiálů a struktur s užitečnými magnetodynamickými vlastnostmi. Jednou z experimentálních technik sloužících ke zjištění takových vlastností je měření feromagnetické resonance pomocí vektorového obvodového analyzátoru. Touto experimentální technikou se zabývá předložená bakalářská práce. Nejprve jsou zde stručně uvedeny teoretické základy dynamiky magnetizace a šíření elektromagnetických vln v mikrovlnných obvodech. Dále jsou v práci popsány jednotlivé komponenty experimentální sestavy a její konstrukce. Funkce zařízení je prezentována na měření feromagnetické resonance vzorku permalloye. Naměřená data jsou zpracována podle metod uvedených v této práci a na závěr jsou předloženy výsledné magnetodynamické vlastnosti permalloye.Further development of magnonics, the field of study dealing with the phenomenon of spin waves, is connected to the research of novel materials and structures with useful magnetodynamic properties. One of the possible experimental techniques used to quantify these properties is the measurement of ferromagnetic resonance using vector network analyzer. This experimental technique is being dealt with in the presented bachelor thesis. At the beginning we shortly introduce the theoretical foundations of magnetization dynamics and the propagation of electromagnetic waves in microwave circuits. Then we describe the individual devices of the experimental apparatus and its overall design. Function of the device is demonstrated on a measurement of ferromagnetic resonance of a permalloy sample. Acquired data is processed using the methods mentioned in this thesis and at the end we present the resulting magnetodynamic properties of permalloy.

    Spin wave propagation in structures with locally modified magnetic anisotropy

    Get PDF
    Zařízení založená na spinových vlnách mají potenciál být využita ve výpočetní technice s nízkou spotřebou energie. Pro úspěšné využití je samozřejmě potřeba spojit více takových zařízení na jednom čipu, součástí čehož musí být zatáčení spinových vln zahnutými vlnovody. Problém zatáčení spinových vln v dipolárně výměnném režimu zatím nebyl uspokojivě vyřešen, vyzkoušené přístupy vedly ke ztrátě intenzity a fázové koherence. V této diplomové práci jsme zkoumali dva systémy, které by mohly být využity k zatáčení spinových vln. Prvním z nich jsou tenké metastabilní vrstvy slitiny železa a niklu. Paramagnetická metastabilní fcc vrstva, která byla epitaxně narostena na substrátu z mědi, může být transformována do stabilní ferromagnetické bcc fáze pomocí fokusovaného iontového svazku. Tato technika nám dává prostorovou kontrolu nad transformačním procesem a strategie skenování svazkem nám dokonce umožňuje určit směr mangetické anisotropie. Magnetické vlastnosti struktur vytvořených touto metodou a lom spinových vln mezi doménami s odlišným směrem magnetické anisotropie byly změřeny pomocí mikroskopie Brillouinova rozptylu světla. Druhým zkoumaným systémem jsou zvlněné vlnovody, jejichž zvlnění indukuje magnetickou anisotropii. Zvlnění magnetické vrstvy je vytvořeno depozicí nemagnetických vlnek na substrátu indukovanou fokusovaným elektronovým svazkem a následnou depozicí magnetického materiálu. Byly vyrobeny různé návrhy zatočených zvlněných vlnovodů a změřili jsme šíření spinových vln jejich zatáčkami pomocí mikroskopie Brillouinova rozptylu světla. Využili jsme také mikromagnetické simulace pro získání hlubšího porozumění zkoumané problematiky a pro hledání vhodných návrhů experimentů.Devices based on spin waves have the potential to be used in low-power data processing. Naturally, a successful application would require many of those devices to be interconnected on a chip. Such a chip would have to include steering of spin waves through turned waveguides. The issue of steering dipole-exchange spin waves through waveguides has not been sufficiently solved so far, as the tested designs lead to a loss of intensity and phase coherence. In the presented thesis, we have studied two systems, which could be exploited for spin-wave steering. First, we dealt with metastable iron-nickel thin films. The paramagnetic metastable fcc layer epitaxially grown on a Cu substrate can be transformed into a stable ferromagnetic bcc phase by a focused ion beam. This technique gives us spatial control over the transformation process, and the scanning strategy even allows us to determine the direction of magnetic anisotropy. Magnetic properties of structures prepared by this technique, together with spin-wave refraction between domains with different anisotropy directions, were characterized by Brillouin light scattering microscopy. Moreover, we have studied spin-wave propagation in a system with corrugation induced magnetic anisotropy. The corrugated magnetic film is created by focused electron beam-induced deposition of nonmagnetic ridges on a substrate and subsequent deposition of the magnetic material. Turned corrugated waveguides of different designs were prepared and we have measured spin-wave propagation through them by Brillouin light scattering microscopy. Micromagnetic simulations were also employed to provide further insight and to help us identify good experimental designs.

    Zero-field spin wave turns

    Full text link
    Spin-wave computing, a potential successor to CMOS-based technologies, relies on the efficient manipulation of spin waves for information processing. While basic logic devices like magnon transistors, gates, and adders have been experimentally demonstrated, the challenge for complex magnonic circuits lies in steering spin waves through sharp turns. In this study we demonstrate with micromagnetic simulations and Brillouin light scattering microscopy experiments, that dipolar spin waves can propagate through 90-degree turns without distortion. The key lies in carefully designed in-plane magnetization landscapes, addressing challenges posed by anisotropic dispersion. The experimental realization of the required magnetization landscape is enabled by spatial manipulation of the uniaxial anisotropy using corrugated magnonic waveguides. The findings presented in this work should be considered in any magnonic circuit design dealing with anisotropic dispersion and spin wave turns.Comment: 6 pages, 4 figure

    Filtration of aluminium alloys

    No full text
    corecore