266 research outputs found

    A stringent upper limit to 18cm radio emission from the extrasolar planet system tau Bootis

    Full text link
    Context: It has been speculated for many years that some extrasolar planets may emit strong cyclotron emission at low radio frequencies in the range 10-100 MHz. Despite several attempts no such emission has yet been seen. Aims: The hot Jupiter system tau Bootis is one of the nearest (d=15 pc) exoplanets known to date. The gravitational influence of this massive hot Jupiter (M=6 M_jup) has locked the star-planet system, making the star rotate in P~3.3 days, similar to the orbital period of the planet. From the well established correlation between stellar rotation and radio luminosity, it is conceivable that the tau Bootis system emits strong radio emission at significantly higher frequencies than currently probed, which we aimed to investigate with this work. Methods: We observed tau Bootis with the Westerbork Synthesis Radio Telescope (WSRT) at a frequency of 1.7 GHz. for 12 hours in spectral line mode, reaching a noise level of 42 microJy/beam at the position of the target. Results: No 18cm radio emission is detected from tau Bootis, resulting in a 3 sigma upper limit of 0.13 mJy, corresponding to a 18cm radio luminosity of <3.7e13 erg/s/Hz. We observe tau Bootis to be two orders of magnitude fainter than expected from the stellar relation between radio luminosity and rotation velocity. Conclusions: This implies that either the tau Bootis system is underluminous in the radio compared to similar fast-rotating stars, or that we happened to observe the target during a low state of radio emission.Comment: 4 pages, 1 figure: Accepted for publication in A&

    The core flux of the brightest 10 micron galaxies in the southern sky

    Get PDF
    Aims. Near diffraction-limited images have been taken at 8.9, 11.9, and 12.9 micron for the brightest extragalactic sources in the southern sky, in order to optimally plan N-band observations with MIDI (MID-infrared Interferometric instrument) at the VLTI. Methods. We have assembled a sample of 21 objects consisting of all the AGNs observable from Paranal observatory, Chile, plus three non-AGN objects, with an estimated N-band flux greater than 400mJy. We used the TIMMI2 Mid Infrared instrument mounted on the ESO's 3.6m telescope to obtain near diffraction-limited images in order to establish the unresolved core flux within < 0.5 arscsec. Results. Positions and core total fluxes were obtained for all sources in our sample and compared with similar investigations in the literature. We find that 15 AGN and the nuclear starburst in NGC 253 exhibit an unresolved core flux < 300mJy at 11.9 micron, making them promising targets for MIDI at the VLTI. For extended sources, near diffraction-limited images are presented and discussed.Comment: Accepted to A&

    A vestige low metallicity gas shell surrounding the radio galaxy 0943-242 at z=2.92

    Get PDF
    Observations are presented showing the doublet CIV 1550 absorption lines superimposed on the CIV emission in the radio galaxy 0943-242. Within the errors, the redshift of the absorption system that has a column density of N_CIV = 10^{14.5 +- 0.1} cm-2 coincides with that of the deep Ly-alpha absorption trough observed by Rottgering et al. (1995). The gas seen in absorption has a resolved spatial extent of at least 13 kpc (the size of the extended emission line region). We first model the absorption and emission gas as co-spatial components with the same metallicity and degree of excitation. Using the information provided by the emission and absorption line ratios of CIV and Ly-alpha, we find that the observed quantities are incompatible with photoionization or collisional ionization of cloudlets with uniform properties. We therefore reject the possibility that the absorption and emission phases are co-spatial and favour the explanation that the absorption gas has low metallicity and is located further away from the host galaxy (than the emission line gas). The estimated low metallicity for the absorption gas in 0943-242 (Z \~ 1% solar) and its proposed location -outer halo outside the radio cocoon- suggest that its existence preceeds the observed AGN phase and is a vestige of the initial starburst at the onset of formation of the parent galaxy.Comment: 11 pages,5 figures, A&A accepte

    Diffuse radio emission in the merging cluster MACS J0717.5+3745: the discovery of the most powerful radio halo

    Full text link
    Hierarchical models of structure formation predict that galaxy clusters grow via mergers of smaller clusters and galaxy groups, as well as through continuous accretion of gas. MACS J0717.5+3745 is an X-ray luminous and complex merging cluster, located at a redshift of 0.55. Here we present Giant Metrewave Radio Telescope (GMRT) radio observations at 610 MHz of this cluster. The main aim of the observations is to search for diffuse radio emission within the galaxy cluster MACS J0717.5+3745 related to the ongoing merger. These GMRT observations are complemented by Very Large Array (VLA) archival observations at 1.4, 4.9 and 8.5 GHz. We have discovered a radio halo in the cluster MACS J0717.5+3745 with a size of about 1.2 Mpc. The radio power P_1.4 GHz is 5 x 10^25 W/Hz, which makes it the most powerful radio halo known till date. A 700 kpc radio structure, which we classify as a radio relic, is located in between the merging substructures of the system. The location of this relic roughly coincides with regions of the intra-cluster medium (ICM) that have a significant enhancement in temperature as shown by Chandra. The major axis of the relic is also roughly perpendicular to the merger axis. This shows that the relic might be the result of a merger-related shock wave, where particles are accelerated via the diffuse shock acceleration (DSA) mechanism. Alternatively, the relic might trace an accretion shock of a large-scale galaxy filament to the south-west. The global spectral index of radio emission within the cluster is found to be -1.24 +/-0.05 between 4.9 GHz and 610 MHz. We derive a value of 5.8 microGauss for the equipartition magnetic field strength at the location of the radio halo. [abridged].Comment: 8 pages, 9 figures, accepted for publication in A&A on August 3, 200

    The radio source B 1834+620: A double-double radio galaxy with interesting properties

    Get PDF
    We present a study of the peculiar radio galaxy B 1834+620. It is characterised by the presence of a 420-kpc large edge-brightened radio source which is situated within, and well aligned with, a larger (1.66 Mpc) radio source. Both sources apparently originate in the same host galaxy, which has a R_s-magnitude of 19.7 and a redshift of 0.5194, as determined from the strong emission-lines in the spectrum. We have determined the rotation measures towards this source, as well as the radio spectral energy distribution of its components. The radio spectrum of the large outer source is steeper than that of the smaller inner source. The radio core has a spectrum that peaks at a frequency of a few GHz. The rotation measures towards the four main components are quite similar, within  ⁣2\sim\!2 rad m2^{-2} of 58 rad m2^{-2}. They are probably largely galactic in origin. We have used the presence of a bright hotspot in the northern outer lobe to constrain the advance velocity of the inner radio lobes to the range between 0.19c and 0.29c, depending on the orientation of the source. This corresponds to an age of this structure in the range between 2.6 and 5.8 Myr. We estimate a density of the ambient medium of the inner lobes of \la 1.6 \times 10^{-30} gr\,cm3^{-3} (particle density \la 8 \times 10^{-7} cm3^{-3}). A low ambient density is further supported by the discrepancy between the large optical emission-line luminosity of the host galaxy and the relatively low radio power of the inner lobes.Comment: Accepted for publication in MNRA

    Particle Acceleration on Megaparsec Scales in a Merging Galaxy Cluster

    Full text link
    Galaxy clusters form through a sequence of mergers of smaller galaxy clusters and groups. Models of diffusive shock acceleration (DSA) suggest that in shocks that occur during cluster mergers, particles are accelerated to relativistic energies, similar to supernova remnants. Together with magnetic fields these particles emit synchrotron radiation and may form so-called radio relics. Here we report the detection of a radio relic for which we find highly aligned magnetic fields, a strong spectral index gradient, and a narrow relic width, giving a measure of the magnetic field in an unexplored site of the universe. Our observations prove that DSA also operates on scales much larger than in supernova remnants and that shocks in galaxy clusters are capable of producing extremely energetic cosmic rays.Comment: Published in Science Express on 23 September 2010, 6 figures, Supporting Online Material included. This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive version was published in Science, volume 330, 15 October 201

    VLA radio continuum observations of a new sample of high redshift radio galaxies

    Get PDF
    We present new deep multi-frequency radio-polarimetric images of a sample of high redshift radio galaxies (HzRGs), having redshift between 1.7 and 4.1. The radio data at 4.7 and 8.2 GHz were taken with the Very Large Array in the A configuration and provide a highest angular resolution of 0.2''. Maps of total intensity, radio spectral index, radio polarization and internal magnetic field are presented for each source. The morphology of most objects is that of standard FRII double radio sources, but several contain multiple hot-spots in one or both lobes. Compared to similar samples of HzRGs previously imaged, there is a higher fraction (29%) of compact steep spectrum sources (i.e. sources with a projected linear size less than 20 kpc). Radio cores are identified in about half of the sample and tend to have relatively steep spectra (alpha < -1). Polarization is detected in all but 4 sources, with typical polarization at 8.2 GHz of around 10-20%. The Faraday rotation can be measured in most of the radio galaxies: the observed rotation measure (RM) of 8 radio sources exceeds 100 rad m^{-2} in at least one of the lobes, with large gradients between the two lobes. We find no dependence of Faraday rotation with other properties of the radio sources. If the origin of the Faraday rotation is local to the sources, as we believe, then the intrinsic RM is more than a 1000 rad m^{-2}. Because low redshift radio galaxies residing at the center of clusters usually show extreme RMs, we suggest that the high-z large RM sources also lie in very dense environments. Finally, we find that the fraction of powerful radio galaxies with extreme Faraday rotation increases with redshift, as would be expected if their average environment tends to become denser with decreasing cosmic epoch.Comment: Accepted for publication in A&A Supplemen
    corecore