12 research outputs found

    The development of TGFβR1 PET tracers for in vivo imaging

    Get PDF
    This thesis focusses on the diagnosis of Pulmonary arterial hypertension (PAH). The disease is still difficult to diagnose as early symptoms related to PAH are vague and non-specific [1]. Right heart catheterization is the gold standard to diagnose PAH, but this technique is very invasive. Doppler echocardiography can be used to diagnose PAH in symptomatic patients, but in asymptomatic and mildly symptomatic patients its value has been questioned. Consequently, PAH is normally diagnosed when this pulmonary vascular disease is already advanced. Clearly, alternative non-invasive diagnostic tools for early detection of PAH are needed, which potentially may lead to a reduction in mortality rate. To date, there are no non-invasive molecular imaging methods to confirm the diagnosis of PAH. Multiple in vivo studies have revealed the importance of the transforming growth factor β (TGFβ) pathway in PAH. Consequently, imaging of ALK5 may provide opportunities to study the role of ALK5 in PAH, thereby providing better insight into the pathology and progression of this disease

    The natural history and genotype–phenotype correlations of TMPRSS3 hearing loss:an international, multi-center, cohort analysis

    Get PDF
    TMPRSS3-related hearing loss presents challenges in correlating genotypic variants with clinical phenotypes due to the small sample sizes of previous studies. We conducted a cross-sectional genomics study coupled with retrospective clinical phenotype analysis on 127 individuals. These individuals were from 16 academic medical centers across 6 countries. Key findings revealed 47 unique TMPRSS3 variants with significant differences in hearing thresholds between those with missense variants versus those with loss-of-function genotypes. The hearing loss progression rate for the DFNB8 subtype was 0.3 dB/year. Post-cochlear implantation, an average word recognition score of 76% was observed. Of the 51 individuals with two missense variants, 10 had DFNB10 with profound hearing loss. These 10 all had at least one of 4 TMPRSS3 variants predicted by computational modeling to be damaging to TMPRSS3 structure and function. To our knowledge, this is the largest study of TMPRSS3 genotype–phenotype correlations. We find significant differences in hearing thresholds, hearing loss progression, and age of presentation, by TMPRSS3 genotype and protein domain affected. Most individuals with TMPRSS3 variants perform well on speech recognition tests after cochlear implant, however increased age at implant is associated with worse outcomes. These findings provide insight for genetic counseling and the on-going design of novel therapeutic approaches.</p

    Radiosynthesis of 1-iodo-2-[11C]methylpropane and 2-methyl-1-[11C]propanol and its application for alkylation reactions and C―C bond formation

    No full text
    The multitude of biologically active compounds requires the availability of a broad spectrum of radiolabeled synthons for the development of positron emission tomography (PET) tracers. The aim of this study was to synthesize 1-iodo-2-[11C]methylpropane and 2-methyl-1-[11C]propanol and investigate the use of these reagents in further radiosynthesis reactions. 2-Methyl-1-[11C]propanol was obtained with an average radiochemical yield of 46 ± 6% d.c. and used with fluorobenzene as starting material. High conversion rates of 85 ± 4% d.c. could be observed with HPLC, but large precursor amounts (32 mg, 333 μmol) were needed. 1-Iodo-2-[11C]methylpropane was synthesized with a radiochemical yield of 25 ± 7% d.c. and with a radiochemical purity of 78 ± 7% d.c. The labelling agent 1-iodo-2-[11C]methylpropane was coupled to thiophenol, phenol and phenylmagnesium bromide. Average radiochemical conversions of 83% d.c. for thiophenol, 40% d.c. for phenol, and 60% d.c. for phenylmagnesium bromide were obtained. In addition, [11C]2-methyl-1-propyl phenyl sulphide was isolated with a radiochemical yield of 5 ± 1% d.c. and a molar activity of 346 ± 113 GBq/μmol at the end of synthesis. Altogether, the syntheses of 1-iodo-2-[11C]methylpropane and 2-methyl-1-[11C]propanol were achieved and applied as proof of their applicability

    In vivo imaging of TGFβ signalling components using positron emission tomography

    No full text
    The transforming growth factor β (TGFβ) family of cytokines achieves homeostasis through a careful balance and crosstalk with complex signalling pathways. Inappropriate activation or inhibition of this pathway and mutations in its components are related to diseases such as cancer, vascular diseases, and developmental disorders. Quantitative imaging of expression levels of key regulators within this pathway using positron emission tomography (PET) can provide insights into the role of this pathway in vivo, providing information on underlying pathophysiological processes. PET imaging can also be used to study the drug targeting of this pathway and to detect diseases in which this pathway is disturbed. In this review, we provide an overview of PET tracers available to study the TGFβ signalling pathway. In addition, we discuss future imaging targets for this pathway and possible leads for new PET tracers

    Regiochemistry of the Condensation of 2‑Aroyl-cyclohexanones and 2‑Cyanoacetamide: <sup>13</sup>C‑Labeling Studies and Semiempirical MO Calculations

    No full text
    Hydroxy-aryl-5,6,7,8-tetrahydroisoquinoline-4-carbonitriles represent interesting chemical scaffolds, but synthetic access to these compounds is limited. The reaction of 2-aroyl-cyclohexanones with 2-cyanoacetamide and base in ethanol has been reported to lead to the formation of the tetrahydroisoquinoline isomer. We show that depending on the electronic nature of the <i>para-</i>substituent on the aryl ring, formation of the regioisomeric tetrahydroquinoline isomer can significantly compete. The electron-donating or -withdrawing properties of the <i>para-</i>substituent of the aryl ring determines the ratio of product isomers. A series of 2-aroyl-cyclohexanones, with <i>para</i>-substituents ranging from electron-donating to electron-withdrawing, were reacted with [2-<sup>13</sup>C]-cyanoacetamide. The product ratio and absolute regiochemistry were directly determined by quantitative <sup>13</sup>C, HMBC, and NOESY NMR spectroscopy on the reaction mixtures. A clear relationship between the regioisomeric product ratio and the Hammett sigma values of the substituents is demonstrated. This is explained by the separate in situ yields, which reveal that the pathway leading to the tetrahydroquinoline regioisomer is significantly more sensitive toward the electronic nature of the <i>para</i>-substituent than the pathway leading to the tetrahydroisoquinoline. Semiempirical AM1 molecular orbital calculations on the starting electrophile 2-aroyl-cyclohexanone support a correlation between the energy of the LUMOs and the regioisomeric product ratio. Our results facilitate synthetic access to a range of these interesting synthetic intermediates

    Imaging the TGFβ type I receptor in pulmonary arterial hypertension

    No full text
    Transforming growth factor β (TGFβ) activity is perturbed in remodelled pulmonary vasculature of patients with pulmonary arterial hypertension (PAH), cancer, vascular diseases and developmental disorders. Inhibition of TGFβ, which signals via activin receptor-like kinase 5 (ALK5), prevents progression and development of experimental PAH. The purpose of this study was to assess two ALK5 targeting positron emission tomography (PET) tracers ([11C]LR111 and [18F]EW-7197) for imaging ALK5 in monocrotaline (MCT)- and Sugen/hypoxia (SuHx)-induced PAH. Both tracers were subjected to extensive in vitro and in vivo studies. [11C]LR111 showed the highest metabolic stability, as 46 ± 2% of intact tracer was still present in rat blood plasma after 60 min. In autoradiography experiments, [11C]LR111 showed high ALK5 binding in vitro compared with controls, 3.2 and 1.5 times higher in SuHx and MCT, respectively. In addition, its binding could be blocked by SB431542, an adenosine triphosphate competitive ALK5 kinase inhibitor. However, [18F]EW-7197 showed the best in vivo results. 15 min after injection, uptake was 2.5 and 1.4 times higher in the SuHx and MCT lungs, compared with controls. Therefore, [18F]EW-7197 is a promising PET tracer for ALK5 imaging in PAH

    Synthesis and preclinical evaluation of [11C]LR111 and [18F]EW-7197 as PET tracers of the activin-receptor like kinase-5

    No full text
    The transforming growth factor β (TGFβ) pathway plays a complex role in cancer biology, being involved in both tumour suppression as well as promotion. Overactive TGFβ signalling has been linked to multiple diseases, including cancer, pulmonary arterial hypertension, and fibrosis. One of the key meditators within this pathway is the TGFβ type I receptor, also termed activin receptor-like kinase 5 (ALK5). ALK5 expression level is a key determinant of TGFβ signalling intensity and duration, and perturbation has been linked to diseases. A validated ALK5 positron emission tomography (PET) tracer creates an opportunity, therefore, to study its role in human diseases. To develop ALK5 PET tracers, two small molecule ALK5 kinase inhibitors were selected as lead compounds, which were labelled with carbon-11 and fluorine-18, respectively. [11C]LR111 was synthesized with a yield of 17 ± 6%, a molar activity of 126 ± 79 GBq·μmol−1 and a purity of >95% (n = 44). [18F]EW-7197 was synthesized with a yield of 10 ± 5%, a molar activity of 183 ± 126 GBq·μmol−1 and a purity of >95% (n = 11). Metabolic stability was evaluated in vivo in mice, showing 39 ± 2% of intact [11C]LR111 and 21 ± 2% of intact [18F]EW-7197 in blood plasma at 45 min p.i. In vitro binding experiments were conducted in breast cancer MDA-MB-231 and lung cancer A431 cell lines. In addition, both tracers were used for PET imaging in MDA-MB-231 xenograft models. Selective uptake of [18F]EW-7197 and [11C]LR111 was observed in MDA-MB-231 cells, in the MDA-MB-231 tumour xenografts in vivo and in the autoradiograms. As [11C]LR111 and [18F]EW-7197 showed selectivity of binding to ALK5 in vivo and in vitro. Both tracers are thereby valuable tools for the detection of ALK5 activity

    Synthesis and preclinical evaluation of [ 11C]LR111 and [ 18F]EW-7197 as PET tracers of the activin-receptor like kinase-5.

    No full text
    The transforming growth factor β (TGFβ) pathway plays a complex role in cancer biology, being involved in both tumour suppression as well as promotion. Overactive TGFβ signalling has been linked to multiple diseases, including cancer, pulmonary arterial hypertension, and fibrosis. One of the key meditators within this pathway is the TGFβ type I receptor, also termed activin receptor-like kinase 5 (ALK5). ALK5 expression level is a key determinant of TGFβ signalling intensity and duration, and perturbation has been linked to diseases. A validated ALK5 positron emission tomography (PET) tracer creates an opportunity, therefore, to study its role in human diseases. To develop ALK5 PET tracers, two small molecule ALK5 kinase inhibitors were selected as lead compounds, which were labelled with carbon-11 and fluorine-18, respectively. [ 11C]LR111 was synthesized with a yield of 17 ± 6%, a molar activity of 126 ± 79 GBq·μmol -1 and a purity of >95% (n = 44). [ 18F]EW-7197 was synthesized with a yield of 10 ± 5%, a molar activity of 183 ± 126 GBq·μmol -1 and a purity of >95% (n = 11). Metabolic stability was evaluated in vivo in mice, showing 39 ± 2% of intact [ 11C]LR111 and 21 ± 2% of intact [ 18F]EW-7197 in blood plasma at 45 min p.i. In vitro binding experiments were conducted in breast cancer MDA-MB-231 and lung cancer A431 cell lines. In addition, both tracers were used for PET imaging in MDA-MB-231 xenograft models. Selective uptake of [ 18F]EW-7197 and [ 11C]LR111 was observed in MDA-MB-231 cells, in the MDA-MB-231 tumour xenografts in vivo and in the autoradiograms. As [ 11C]LR111 and [ 18F]EW-7197 showed selectivity of binding to ALK5 in vivo and in vitro. Both tracers are thereby valuable tools for the detection of ALK5 activity
    corecore