62 research outputs found

    Decision aid on radioactive iodine treatment for early stage papillary thyroid cancer - a randomized controlled trial

    Get PDF
    Abstract Background Patients with early stage papillary thyroid carcinoma (PTC), are faced with the decision to either to accept or reject adjuvant radioactive iodine (RAI) treatment after thryroidectomy. This decision is often difficult because of conflicting reports of RAI treatment benefit and medical evidence uncertainty due to the lack of long-term randomized controlled trials. Methods We report the protocol for a parallel, 2-arm, randomized trial comparing an intervention group exposed to a computerized decision aid (DA) relative to a control group receiving usual care. The DA explains the options of adjuvant radioactive iodine or no adjuvant radioactive iodine, as well as associated potential benefits, risks, and follow-up implications. Potentially eligible adult PTC patient participants will include: English-speaking individuals who have had recent thyroidectomy, and whose primary tumor was 1 to 4 cm in diameter, with no known metastases to lymph nodes or distant sites, with no other worrisome features, and who have not received RAI treatment for thyroid cancer. We will measure the effect of the DA on the following patient outcomes: a) knowledge about PTC and RAI treatment, b) decisional conflict, c) decisional regret, d) client satisfaction with information received about RAI treatment, and e) the final decision to accept or reject adjuvant RAI treatment and rationale. Discussion This trial will provide evidence of feasibility and efficacy of the use of a computerized DA in explaining complex issues relating to decision making about adjuvant RAI treatment in early stage PTC. Trial registration Clinical Trials.gov Identifier: NCT0108355

    Quality Indicators for the Diagnosis and Management of Primary Hyperparathyroidism

    Get PDF
    IMPORTANCE Primary hyperparathyroidism (pHPT) is a common endocrine disorder with many diagnostic and treatment challenges. Despite high-quality guidelines, care is variable, and there is low adherence to evidence-based treatment pathways. OBJECTIVE To develop quality indicators (QIs) to evaluate the diagnosis and treatment of pHPT that could measure, improve, and optimize quality of care and outcomes for patients with this disease. DESIGN, SETTING, AND PARTICIPANTS This quality improvement study used a guideline-based approach to develop QIs that were ranked by a Canadian 9-member expert panel of 3 endocrinologists, 3 otolaryngologists, and 3 endocrine surgeons. Data were analyzed between September 2020 and May 2021. MAIN OUTCOMES AND MEASURES Candidate indicators (CIs) were extracted from published primary hyperparathyroidism guidelines and summarized with supporting evidence. The 9-member expert panel rated each CI on the validity, reliability, and feasibility of measurement. Final QIs were selected from CIs using the modified RAND-University of California, Los Angeles appropriateness methodology. All panelists were then asked to rank the top 5 QIs for primary, endocrine, and surgical care. RESULTS Forty QIs were identified and evaluated by the expert panel. After 2 rounds of evaluations and discussion, a total of 18 QIs were selected as appropriate measures of high-quality care. The top 5 QIs for primary, endocrine, and surgical care were selected following panelist rankings. CONCLUSIONS AND RELEVANCE This quality improvement study proposes 18 QIs for the diagnosis and management of pHPT. Furthermore, the top 5 QIs applicable to physicians commonly treating pHPT, including general physicians, internists, endocrinologists, otolaryngologists, and surgeons, are included. These QIs not only assess the quality of care to guide the process of improvement, but also can assess the implementation of evidence-based guideline recommendations. Using these indicators in clinical practice and health system registries can improve quality and cost-effectiveness of care for patients with pHPT

    On the role of theory and modeling in neuroscience

    Full text link
    In recent years, the field of neuroscience has gone through rapid experimental advances and extensive use of quantitative and computational methods. This accelerating growth has created a need for methodological analysis of the role of theory and the modeling approaches currently used in this field. Toward that end, we start from the general view that the primary role of science is to solve empirical problems, and that it does so by developing theories that can account for phenomena within their domain of application. We propose a commonly-used set of terms - descriptive, mechanistic, and normative - as methodological designations that refer to the kind of problem a theory is intended to solve. Further, we find that models of each kind play distinct roles in defining and bridging the multiple levels of abstraction necessary to account for any neuroscientific phenomenon. We then discuss how models play an important role to connect theory and experiment, and note the importance of well-defined translation functions between them. Furthermore, we describe how models themselves can be used as a form of experiment to test and develop theories. This report is the summary of a discussion initiated at the conference Present and Future Theoretical Frameworks in Neuroscience, which we hope will contribute to a much-needed discussion in the neuroscientific community

    Bartonella species detection in captive, stranded and free-ranging cetaceans

    Get PDF
    We present prevalence of Bartonella spp. for multiple cohorts of wild and captive cetaceans. One hundred and six cetaceans including 86 bottlenose dolphins (71 free-ranging, 14 captive in a facility with a dolphin experiencing debility of unknown origin, 1 stranded), 11 striped dolphins, 4 harbor porpoises, 3 Risso's dolphins, 1 dwarf sperm whale and 1 pygmy sperm whale (all stranded) were sampled. Whole blood (n = 95 live animals) and tissues (n = 15 freshly dead animals) were screened by PCR (n = 106 animals), PCR of enrichment cultures (n = 50 animals), and subcultures (n = 50 animals). Bartonella spp. were detected from 17 cetaceans, including 12 by direct extraction PCR of blood or tissues, 6 by PCR of enrichment cultures, and 4 by subculture isolation. Bartonella spp. were more commonly detected from the captive (6/14, 43%) than from free-ranging (2/71, 2.8%) bottlenose dolphins, and were commonly detected from the stranded animals (9/21, 43%; 3/11 striped dolphins, 3/4 harbor porpoises, 2/3 Risso's dolphins, 1/1 pygmy sperm whale, 0/1 dwarf sperm whale, 0/1 bottlenose dolphin). Sequencing identified a Bartonella spp. most similar to B. henselae San Antonio 2 in eight cases (4 bottlenose dolphins, 2 striped dolphins, 2 harbor porpoises), B. henselae Houston 1 in three cases (2 Risso's dolphins, 1 harbor porpoise), and untyped in six cases (4 bottlenose dolphins, 1 striped dolphin, 1 pygmy sperm whale). Although disease causation has not been established, Bartonella species were detected more commonly from cetaceans that were overtly debilitated or were cohabiting in captivity with a debilitated animal than from free-ranging animals. The detection of Bartonella spp. from cetaceans may be of pathophysiological concern

    Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance

    Get PDF
    BACKGROUND: Concern over bio-terrorism has led to recognition that traditional public health surveillance for specific conditions is unlikely to provide timely indication of some disease outbreaks, either naturally occurring or induced by a bioweapon. In non-traditional surveillance, the use of health care resources are monitored in "near real" time for the first signs of an outbreak, such as increases in emergency department (ED) visits for respiratory, gastrointestinal or neurological chief complaints (CC). METHODS: We collected ED CCs from 2/1/94 – 5/31/02 as a training set. A first-order model was developed for each of seven CC categories by accounting for long-term, day-of-week, and seasonal effects. We assessed predictive performance on subsequent data from 6/1/02 – 5/31/03, compared CC counts to predictions and confidence limits, and identified anomalies (simulated and real). RESULTS: Each CC category exhibited significant day-of-week differences. For most categories, counts peaked on Monday. There were seasonal cycles in both respiratory and undifferentiated infection complaints and the season-to-season variability in peak date was summarized using a hierarchical model. For example, the average peak date for respiratory complaints was January 22, with a season-to-season standard deviation of 12 days. This season-to-season variation makes it challenging to predict respiratory CCs so we focused our effort and discussion on prediction performance for this difficult category. Total ED visits increased over the study period by 4%, but respiratory complaints decreased by roughly 20%, illustrating that long-term averages in the data set need not reflect future behavior in data subsets. CONCLUSION: We found that ED CCs provided timely indicators for outbreaks. Our approach led to successful identification of a respiratory outbreak one-to-two weeks in advance of reports from the state-wide sentinel flu surveillance and of a reported increase in positive laboratory test results

    Phocine distemper Virus: Current knowledge and future directions

    Get PDF
    Phocine distemper virus (PDV) was first recognized in 1988 following a massive epidemic in harbor and grey seals in north-western Europe. Since then, the epidemiology of infection in North Atlantic and Arctic pinnipeds has been investigated. In the western North Atlantic endemic infection in harp and grey seals predates the European epidemic, with relatively small, localized mortality events occurring primarily in harbor seals. By contrast, PDV seems not to have become established in European harbor seals following the 1988 epidemic and a second event of similar magnitude and extent occurred in 2002. PDV is a distinct species within the Morbillivirus genus with minor sequence variation between outbreaks over time. There is now mounting evidence of PDV-like viruses in the North Pacific/Western Arctic with serological and molecular evidence of infection in pinnipeds and sea otters. However, despite the absence of associated mortality in the region, there is concern that the virus may infect the large Pacific harbor seal and northern elephant seal populations or the endangered Hawaiian monk seals. Here, we review the current state of knowledge on PDV with particular focus on developments in diagnostics, pathogenesis, immune response, vaccine development, phylogenetics and modeling over the past 20 years

    Deadly diving? Physiological and behavioural management of decompression stress in diving mammals

    Get PDF
    © The Author(s), 2011. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Proceedings of the Royal Society B Biological Sciences 279 (2012): 1041-1050, doi:10.1098/rspb.2011.2088.Decompression sickness (DCS; ‘the bends’) is a disease associated with gas uptake at pressure. The basic pathology and cause are relatively well known to human divers. Breath-hold diving marine mammals were thought to be relatively immune to DCS owing to multiple anatomical, physiological and behavioural adaptations that reduce nitrogen gas (N2) loading during dives. However, recent observations have shown that gas bubbles may form and tissue injury may occur in marine mammals under certain circumstances. Gas kinetic models based on measured time-depth profiles further suggest the potential occurrence of high blood and tissue N2 tensions. We review evidence for gas-bubble incidence in marine mammal tissues and discuss the theory behind gas loading and bubble formation. We suggest that diving mammals vary their physiological responses according to multiple stressors, and that the perspective on marine mammal diving physiology should change from simply minimizing N2 loading to management of the N2 load. This suggests several avenues for further study, ranging from the effects of gas bubbles at molecular, cellular and organ function levels, to comparative studies relating the presence/absence of gas bubbles to diving behaviour. Technological advances in imaging and remote instrumentation are likely to advance this field in coming years.This paper and the workshop it stemmed from were funded by the Woods Hole Oceanographic Institution Marine Mammal Centre
    corecore