1,674 research outputs found

    Noise spectra of an interacting quantum dot

    Full text link
    We study the noise spectra of a many-level quantum dot coupled to two electron reservoirs, when interactions are taken into account only on the dot within the Hartree-Fock approximation. The dependence of the noise spectra on the interaction strength, the coupling to the leads, and the chemical potential is derived. For zero bias and zero temperature, we find that as a function of the (external) frequency, the noise exhibits steps and dips at frequencies reflecting the internal structure of the energy levels on the dot. Modifications due to a finite bias and finite temperatures are investigated for a non-interacting two-level dot. Possible relations to experiments are pointed out.Comment: Added reference

    A Novel Mechanism of B Cell-Mediated Immune Suppression through CD73 Expression and Adenosine Production

    Get PDF
    Immune suppression by regulatory T cells and regulatory B cells is a critical mechanism to limit excess inflammation and autoimmunity. IL-10 is considered the major mediator of B cell induced immune suppression. We report a novel mechanism for immune suppression through adenosine generation by B cells. We identified a novel population of B cells that expresses CD73 as well as CD39, two ectoenzymes that together catalyze the extracellular dephosphorylation of adenine nucleotides to adenosine. Whereas CD39 expression is common among B cells, CD73 expression is not. Approximately 30-50% of B-1 cells (B220(+)CD23(-)) and IL-10 producing B (B10) cells (B220(+)CD5(+)CD1d(hi)) are CD73111, depending on mouse strain, whereas few conventional B-2 cells (B220+CD23+AA4.1) express CD73. In keeping with expression of both CD73 and CD39, we found that CD73(+) B cells produce adenosine in the presence of substrate, whereas B-2 cells do not. CD73(-/-) mice were more susceptible to dextran sulfate sodium salt (DSS)-induced colitis than wild type (WT) mice were, and transfer of CD73+ B cells ameliorated the severity of colitis, suggesting that B cell CD73/CD39/adenosine can modulate DSS-induced colitis. IL-10 production by B cells is not affected by CD73 deficiency. Interestingly, adenosine generation by IL-10(-/-) B cells is impaired because of reduced expression of CD73, indicating an unexpected connection between IL-10 and adenosine and suggesting caution in interpreting the results of studies with IL-10(-/-) cells. Our findings demonstrate a novel regulatory role of B cells on colitis through adenosine generation in an IL10 independent manner

    The k-Point Random Matrix Kernels Obtained from One-Point Supermatrix Models

    Full text link
    The k-point correlation functions of the Gaussian Random Matrix Ensembles are certain determinants of functions which depend on only two arguments. They are referred to as kernels, since they are the building blocks of all correlations. We show that the kernels are obtained, for arbitrary level number, directly from supermatrix models for one-point functions. More precisely, the generating functions of the one-point functions are equivalent to the kernels. This is surprising, because it implies that already the one-point generating function holds essential information about the k-point correlations. This also establishes a link to the averaged ratios of spectral determinants, i.e. of characteristic polynomials

    A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order

    Full text link
    The motion of a small compact object in a background spacetime is investigated in the context of a model nonlinear scalar field theory. This model is constructed to have a perturbative structure analogous to the General Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the effective field theory approach to this model and calculate the finite part of the self force on the small compact object through third order in the ratio of the size of the compact object to the curvature scale of the background (e.g., black hole) spacetime. We use well-known renormalization methods and demonstrate the consistency of the formalism in rendering the self force finite at higher orders within a point particle prescription for the small compact object. This nonlinear scalar model should be useful for studying various aspects of higher-order self force effects in EMRIs but within a comparatively simpler context than the full gravitational case. These aspects include developing practical schemes for higher order self force numerical computations, quantifying the effects of transient resonances on EMRI waveforms and accurately modeling the small compact object's motion for precise determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure

    Canonical formulation of self-gravitating spinning-object systems

    Full text link
    Based on the Arnowitt-Deser-Misner (ADM) canonical formulation of general relativity, a canonical formulation of gravitationally interacting classical spinning-object systems is given to linear order in spin. The constructed position, linear momentum and spin variables fulfill standard Poisson bracket relations. A spatially symmetric time gauge for the tetrad field is introduced. The achieved formulation is of fully reduced form without unresolved constraints, supplementary, gauge, or coordinate conditions. The canonical field momentum is not related to the extrinsic curvature of spacelike hypersurfaces in standard ADM form. A new reduction of the tetrad degrees of freedom to the Einstein form of the metric field is suggested.Comment: 6 pages. v2: extended version; identical to the published one. v3: corrected misprints in (24) and (39); improved notation; added note regarding a further reference

    Two component dark matter

    Full text link
    We explain the PAMELA positron excess and the PPB-BETS/ATIC e+ + e- data using a simple two component dark matter model (2DM). The two particle species in the dark matter sector are assumed to be in thermal equilibrium in the early universe. While one particle is stable and is the present day dark matter, the second one is metastable and decays after the universe is 10^-8 s old. In this model it is simple to accommodate the large boost factors required to explain the PAMELA positron excess without the need for large spikes in the local dark matter density. We provide the constraints on the parameters of the model and comment on possible signals at future colliders.Comment: 6 pages, 2 figures, discussion clarified and extende

    Alteration of the bZIP60/IRE1 Pathway Affects Plant Response to ER Stress in Arabidopsis thaliana

    Get PDF
    The Unfolded Protein Response (UPR) is elicited under cellular and environmental stress conditions that disrupt protein folding in the endoplasmic reticulum (ER). Through the transcriptional induction of genes encoding ER resident chaperones and proteins involved in folding, the pathway contributes to alleviating ER stress by increasing the folding capacity in the ER. Similarly to other eukaryotic systems, one arm of the UPR in Arabidopsis is set off by a non-conventional splicing event mediated by ribonuclease kinase IRE1b. The enzyme specifically targets mature bZIP60 RNA for cleavage, which results in a novel splice variant encoding a nuclear localized transcription factor. Although it is clear that this molecular switch widely affects the transcriptome, its exact role in overall plant response to stress has not been established and mutant approaches have not provided much insight. In this study, we took a transgenic approach to manipulate the pathway in positive and negative fashions. Our data show that the ER-resident chaperone BiP accumulates differentially depending on the level of activation of the pathway. In addition, phenotypes of the transgenic lines suggest that BiP accumulation is positively correlated with plant tolerance to chronic ER stress

    Constraints on Astro-unparticle Physics from SN 1987A

    Full text link
    SN 1987A observations have been used to place constraints on the interactions between standard model particles and unparticles. In this study we calculate the energy loss from the supernovae core through scalar, pseudo scalar, vector, pseudo vector unparticle emission from nuclear bremsstrahlung for degenerate nuclear matter interacting through one pion exchange. In order to examine the constraints on dU=1d_{\cal U}=1 we considered the emission of scalar, pseudo scalar, vector, pseudo vector and tensor through the pair annihilation process e+e−→Uγe^+e^-\to {\cal U} \gamma . In addition we have re-examined other pair annihilation processes. The most stringent bounds on the dimensionless coupling constants for dU=1d_{\cal U} =1 and ΛU=mZ\Lambda_{\cal U}= m_Z are obtained from nuclear bremsstrahlung process for the pseudo scalar and pseudo-vector couplings ∣λ0,1P∣≤4×10−11\bigl|\lambda^{\cal P}_{0,1}\bigr|\leq 4\times 10^{-11} and for tensor interaction, the best limit on dimensionless coupling is obtained from e+e−→Uγe^+ e^-\to {\cal U} \gamma and we get ∣λT∣≤6×10−6\bigl|\lambda^{\cal T}\bigr| \leq 6\times 10^{-6}.Comment: 12 pages, 2 postscript figure

    Higgs- and Goldstone bosons-mediated long range forces

    Full text link
    In certain mild extensions of the Standard Model, spin-independent long range forces can arise by exchange of two very light pseudoscalar spin--0 bosons. In particular, we have in mind models in which these bosons do not have direct tree level couplings to ordinary fermions. Using the dispersion theoretical method, we find a 1/r31/r^{3} behaviour of the potential for the exchange of very light pseudoscalars and a 1/r71/r^{7} dependence if the pseudoscalars are true massless Goldstone bosons.Comment: 13 pages (REVTeX), 2 figure
    • …
    corecore