109 research outputs found

    Conedy: a scientific tool to investigate Complex Network Dynamics

    Full text link
    We present Conedy, a performant scientific tool to numerically investigate dynamics on complex networks. Conedy allows to create networks and provides automatic code generation and compilation to ensure performant treatment of arbitrary node dynamics. Conedy can be interfaced via an internal script interpreter or via a Python module

    Predicting the Fixation Density Over Time

    Get PDF

    Expanding the repertoire of glucocorticoid receptor target genes by engineering genomic response elements

    No full text
    The glucocorticoid receptor (GR), a hormone-activated transcription factor, binds to a myriad of genomic binding sites yet seems to regulate a much smaller number of genes. Genome-wide analysis of GR binding and gene regulation has shown that the likelihood of GR-dependent regulation increases with decreased distance of its binding to the transcriptional start site of a gene. To test if we can adopt this knowledge to expand the repertoire of GR target genes, we used CRISPR/Cas-mediated homology-directed repair to add a single GR-binding site directly upstream of the transcriptional start site of each of four genes. To our surprise, we found that the addition of a single GR-binding site can be enough to convert a gene into a GR target. The gain of GR-dependent regulation was observed for two of four genes analyzed and coincided with acquired GR binding at the introduced binding site. However, the gene-specific gain of GR-dependent regulation could not be explained by obvious differences in chromatin accessibility between converted genes and their non-converted counterparts. Furthermore, by introducing GR-binding sequences with different nucleotide compositions, we show that activation can be facilitated by distinct sequences without obvious differences in activity between the GR-binding sequence variants we tested. The approach to use genome engineering to build genomic response elements facilitates the generation of cell lines with tailored repertoires of GR-responsive genes and a framework to test and refine our understanding of the cis-regulatory logic of gene regulation by testing if engineered response elements behave as predicted

    How to look next? A data-driven approach for scanpath prediction

    Get PDF
    By and large, current visual attention models mostly rely, when considering static stimuli, on the following procedure. Given an image, a saliency map is computed, which, in turn, might serve the purpose of predicting a sequence of gaze shifts, namely a scanpath instantiating the dynamics of visual attention deployment. The temporal pattern of attention unfolding is thus confined to the scanpath generation stage, whilst salience is conceived as a static map, at best conflating a number of factors (bottom-up information, top-down, spatial biases, etc.). In this note we propose a novel sequential scheme that consists of a three-stage processing relying on a center-bias model, a context/layout model, and an object-based model, respectively. Each stage contributes, at different times, to the sequential sampling of the final scanpath. We compare the method against classic scanpath generation that exploits state-of-the-art static saliency model. Results show that accounting for the structure of the temporal unfolding leads to gaze dynamics close to human gaze behaviour

    Fluorescence Dequenching Makes Haem-Free Soluble Guanylate Cyclase Detectable in Living Cells

    Get PDF
    In cardiovascular disease, the protective NO/sGC/cGMP signalling-pathway is impaired due to a decreased pool of NO-sensitive haem-containing sGC accompanied by a reciprocal increase in NO-insensitive haem-free sGC. However, no direct method to detect cellular haem-free sGC other than its activation by the new therapeutic class of haem mimetics, such as BAY 58-2667, is available. Here we show that fluorescence dequenching, based on the interaction of the optical active prosthetic haem group and the attached biarsenical fluorophor FlAsH can be used to detect changes in cellular sGC haem status. The partly overlap of the emission spectrum of haem and FlAsH allows energy transfer from the fluorophore to the haem which reduces the intensity of FlAsH fluorescence. Loss of the prosthetic group, e.g. by oxidative stress or by replacement with the haem mimetic BAY 58-2667, prevented the energy transfer resulting in increased fluorescence. Haem loss was corroborated by an observed decrease in NO-induced sGC activity, reduced sGC protein levels, and an increased effect of BAY 58-2667. The use of a haem-free sGC mutant and a biarsenical dye that was not quenched by haem as controls further validated that the increase in fluorescence was due to the loss of the prosthetic haem group. The present approach is based on the cellular expression of an engineered sGC variant limiting is applicability to recombinant expression systems. Nevertheless, it allows to monitor sGC's redox regulation in living cells and future enhancements might be able to extend this approach to in vivo conditions

    The Amino-Terminus of Nitric Oxide Sensitive Guanylyl Cyclase α1 Does Not Affect Dimerization but Influences Subcellular Localization

    Get PDF
    BACKGROUND: Nitric oxide sensitive guanylyl cyclase (NOsGC) is a heterodimeric enzyme formed by an α- and a β₁-subunit. A splice variant (C-α₁) of the α₁-subunit, lacking at least the first 236 amino acids has been described by Sharina et al. 2008 and has been shown to be expressed in differentiating human embryonic cells. Wagner et al. 2005 have shown that the amino acids 61-128 of the α₁-subunit are mandatory for quantitative heterodimerization implying that the C-α₁-splice variant should lose its capacity to dimerize quantitatively. METHODOLOGY/PRINCIPAL FINDINGS: In the current study we demonstrate preserved quantitative dimerization of the C-α₁-splice by co-purification with the β₁-subunit. In addition we used fluorescence resonance energy transfer (FRET) based on fluorescence lifetime imaging (FLIM) using fusion proteins of the β₁-subunit and the α₁-subunit or the C-α₁ variant with ECFP or EYFP. Analysis of the respective combinations in HEK-293 cells showed that the fluorescence lifetime was significantly shorter (≈0.3 ns) for α₁/β₁ and C-α₁/β₁ than the negative control. In addition we show that lack of the amino-terminus in the α₁ splice variant directs it to a more oxidized subcellular compartment. CONCLUSIONS/SIGNIFICANCE: We conclude that the amino-terminus of the α₁-subunit is dispensable for dimerization in-vivo and ex-vivo, but influences the subcellular trafficking

    Fluorescent Fusion Proteins of Soluble Guanylyl Cyclase Indicate Proximity of the Heme Nitric Oxide Domain and Catalytic Domain

    Get PDF
    BACKGROUND: To examine the structural organisation of heterodimeric soluble guanylyl cyclase (sGC) Förster resonance energy transfer (FRET) was measured between fluorescent proteins fused to the amino- and carboxy-terminal ends of the sGC beta1 and alpha subunits. METHODOLOGY/PRINCIPAL FINDINGS: Cyan fluorescent protein (CFP) was used as FRET donor and yellow fluorescent protein (YFP) as FRET acceptor. After generation of recombinant baculovirus, fluorescent-tagged sGC subunits were co-expressed in Sf9 cells. Fluorescent variants of sGC were analyzed in vitro in cytosolic fractions by sensitized emission FRET. Co-expression of the amino-terminally tagged alpha subunits with the carboxy-terminally tagged beta1 subunit resulted in an enzyme complex that showed a FRET efficiency of 10% similar to fluorescent proteins separated by a helix of only 48 amino acids. Because these findings indicated that the amino-terminus of the alpha subunits is close to the carboxy-terminus of the beta1 subunit we constructed fusion proteins where both subunits are connected by a fluorescent protein. The resulting constructs were not only fluorescent, they also showed preserved enzyme activity and regulation by NO. CONCLUSIONS/SIGNIFICANCE: Based on the ability of an amino-terminal fragment of the beta1 subunit to inhibit activity of an heterodimer consisting only of the catalytic domains (alphacatbetacat), Winger and Marletta (Biochemistry 2005, 44:4083-90) have proposed a direct interaction of the amino-terminal region of beta1 with the catalytic domains. In support of such a concept of "trans" regulation of sGC activity by the H-NOX domains our results indicate that the domains within sGC are organized in a way that allows for direct interaction of the amino-terminal regulatory domains with the carboxy-terminal catalytic region. In addition, we constructed "fluorescent-conjoined" sGC's by fusion of the alpha amino-terminus to the beta1 carboxy-terminus leading to a monomeric, fluorescent and functional enzyme complex. To our knowledge this represents the first example where a fluorescent protein links two different subunits of a higher ordered complex to yield a stoichometrically fixed functionally active monomer
    corecore