890 research outputs found

    Electron-phonon induced spin relaxation in InAs quantum dots

    Full text link
    We have calculated spin relaxation rates in parabolic quantum dots due to the phonon modulation of the spin-orbit interaction in presence of an external magnetic field. Both, deformation potential and piezoelectric electron-phonon coupling mechanisms are included within the Pavlov-Firsov spin-phonon Hamiltonian. Our results have demonstrated that, in narrow gap materials, the electron-phonon deformation potential and piezoelectric coupling give comparable contributions as spin relaxation processes. For large dots, the deformation potential interaction becomes dominant. This behavior is not observed in wide or intermediate gap semiconductors, where the piezoelectric coupling, in general, governs the spin relaxation processes. We also have demonstrated that spin relaxation rates are particularly sensitive to the Land\'e gg-factor.Comment: 4 pages, 2 figures, to be appear in Physica E: Proceedings of the 11 International Conference on Narrow Gap Semiconductor

    Nanoscale Processing by Adaptive Laser Pulses

    Full text link
    We theoretically demonstrate that atomically-precise ``nanoscale processing" can be reproducibly performed by adaptive laser pulses. We present the new approach on the controlled welding of crossed carbon nanotubes, giving various metastable junctions of interest. Adaptive laser pulses could be also used in preparation of other hybrid nanostructures.Comment: 4 pages, 4 Postscript figure

    Laser spectroscopy of hyperfine structure in highly-charged ions: a test of QED at high fields

    Full text link
    An overview is presented of laser spectroscopy experiments with cold, trapped, highly-charged ions, which will be performed at the HITRAP facility at GSI in Darmstadt (Germany). These high-resolution measurements of ground state hyperfine splittings will be three orders of magnitude more precise than previous measurements. Moreover, from a comparison of measurements of the hyperfine splittings in hydrogen- and lithium-like ions of the same isotope, QED effects at high electromagnetic fields can be determined within a few percent. Several candidate ions suited for these laser spectroscopy studies are presented.Comment: 5 pages, 1 figure, 1 table. accepted for Canadian Journal of Physics (2006

    Theory of asymmetric non-additive binary hard-sphere mixtures

    Full text link
    We show that the formal procedure of integrating out the degrees of freedom of the small spheres in a binary hard-sphere mixture works equally well for non-additive as it does for additive mixtures. For highly asymmetric mixtures (small size ratios) the resulting effective Hamiltonian of the one-component fluid of big spheres, which consists of an infinite number of many-body interactions, should be accurately approximated by truncating after the term describing the effective pair interaction. Using a density functional treatment developed originally for additive hard-sphere mixtures we determine the zero, one, and two-body contribution to the effective Hamiltonian. We demonstrate that even small degrees of positive or negative non-additivity have significant effect on the shape of the depletion potential. The second virial coefficient B2B_2, corresponding to the effective pair interaction between two big spheres, is found to be a sensitive measure of the effects of non-additivity. The variation of B2B_2 with the density of the small spheres shows significantly different behavior for additive, slightly positive and slightly negative non-additive mixtures. We discuss the possible repercussions of these results for the phase behavior of binary hard-sphere mixtures and suggest that measurements of B2B_2 might provide a means of determining the degree of non-additivity in real colloidal mixtures

    Ab-initio calculation of the 6Li{}^6Li binding energy with the Hybrid Multideterminant scheme

    Full text link
    We perform an ab-initio calculation for the binding energy of 6Li{}^6Li using the CD-Bonn 2000 NN potential renormalized with the Lee-Suzuki method. The many-body approach to the problem is the Hybrid Multideterminant method. The results indicate a binding energy of about 31MeV31 MeV, within a few hundreds KeV uncertainty. The center of mass diagnostics are also discussed.Comment: 18 pages with 3 figures. More calculations added, to be published in EPJ

    Insulator-Superfluid transition of spin-1 bosons in an optical lattice in magnetic field

    Full text link
    We study the insulator-superfluid transition of spin-1 bosons in an optical lattice in a uniform magnetic field. Based on a mean-field approximation we obtained a zero-temperature phase diagram. We found that depending on the particle number the transition for bosons with antiferromagnetic interaction may occur into different superfluid phases with spins aligned along or opposite to the field direction. This is qualitatively different from the field-free transition for which the mean-field theory predicts a unique (polar) superfluid state for any particle number.Comment: 10 pages, 2 eps figure

    Electron spin as a spectrometer of nuclear spin noise and other fluctuations

    Full text link
    This chapter describes the relationship between low frequency noise and coherence decay of localized spins in semiconductors. Section 2 establishes a direct relationship between an arbitrary noise spectral function and spin coherence as measured by a number of pulse spin resonance sequences. Section 3 describes the electron-nuclear spin Hamiltonian, including isotropic and anisotropic hyperfine interactions, inter-nuclear dipolar interactions, and the effective Hamiltonian for nuclear-nuclear coupling mediated by the electron spin hyperfine interaction. Section 4 describes a microscopic calculation of the nuclear spin noise spectrum arising due to nuclear spin dipolar flip-flops with quasiparticle broadening included. Section 5 compares our explicit numerical results to electron spin echo decay experiments for phosphorus doped silicon in natural and nuclear spin enriched samples.Comment: Book chapter in "Electron spin resonance and related phenomena in low dimensional structures", edited by Marco Fanciulli. To be published by Springer-Verlag in the TAP series. 35 pages, 9 figure

    Generalized hole-particle transformations and spin reflection positivity in multi-orbital systems

    Full text link
    We propose a scheme combining spin reflection positivity and generalized hole-particle and orbital transformations to characterize the symmetry properties of the ground state for some correlated electron models on bipartite lattices. In particular, we rigorously determine at half-filling and for different regions of the parameter space the spin, orbital and η\eta pairing pseudospin of the ground state of generalized two-orbital Hubbard models which include the Hund's rule coupling.Comment: 6 pages, 2 figure

    Magnetic and charge structures in itinerant-electron magnets: Coexistence of multiple SDW and CDW

    Full text link
    A theory of Kondo lattices is applied to studying possible magnetic and charge structures of itinerant-electron antiferromagnets. Even helical spin structures can be stabilized when the nesting of the Fermi surface is not sharp and the superexchange interaction, which arises from the virtual exchange of pair excitations across the Mott-Hubbard gap, is mainly responsible for magnetic instability. Sinusoidal spin structures or spin density waves (SDW) are only stabilized when the nesting of the Fermi surface is sharp enough and a novel exchange interaction arising from that of pair excitations of quasi-particles is mainly responsible for magnetic instability. In particular, multiple SDW are stabilized when their incommensurate ordering wave-numbers ±Q\pm{\bf Q} are multiple; magnetizations of different ±Q\pm{\bf Q} components are orthogonal to each other in double and triple SDW when magnetic anisotropy is weak enough. Unless ±2Q\pm 2{\bf Q} are commensurate, charge density waves (CDW) with ±2Q\pm 2{\bf Q} coexist with SDW with ±Q\pm{\bf Q}. Because the quenching of magnetic moments by the Kondo effect depends on local numbers of electrons, the phase of CDW or electron densities is such that magnetic moments are large where the quenching is weak. It is proposed that the so called stipe order in cuprate-oxide high-temperature superconductors must be the coexisting state of double incommensurate SDW and CDW.Comment: 10 pages, no figure
    • …
    corecore