259 research outputs found

    Decomposition of Geometric Set Systems and Graphs

    Full text link
    We study two decomposition problems in combinatorial geometry. The first part deals with the decomposition of multiple coverings of the plane. We say that a planar set is cover-decomposable if there is a constant m such that any m-fold covering of the plane with its translates is decomposable into two disjoint coverings of the whole plane. Pach conjectured that every convex set is cover-decomposable. We verify his conjecture for polygons. Moreover, if m is large enough, we prove that any m-fold covering can even be decomposed into k coverings. Then we show that the situation is exactly the opposite in 3 dimensions, for any polyhedron and any mm we construct an m-fold covering of the space that is not decomposable. We also give constructions that show that concave polygons are usually not cover-decomposable. We start the first part with a detailed survey of all results on the cover-decomposability of polygons. The second part investigates another geometric partition problem, related to planar representation of graphs. The slope number of a graph G is the smallest number s with the property that G has a straight-line drawing with edges of at most s distinct slopes and with no bends. We examine the slope number of bounded degree graphs. Our main results are that if the maximum degree is at least 5, then the slope number tends to infinity as the number of vertices grows but every graph with maximum degree at most 3 can be embedded with only five slopes. We also prove that such an embedding exists for the related notion called slope parameter. Finally, we study the planar slope number, defined only for planar graphs as the smallest number s with the property that the graph has a straight-line drawing in the plane without any crossings such that the edges are segments of only s distinct slopes. We show that the planar slope number of planar graphs with bounded degree is bounded.Comment: This is my PhD thesi

    Advantage in the discrete Voronoi game

    Get PDF
    We study the discrete Voronoi game, where two players alternately claim vertices of a graph for t rounds. In the end, the remaining vertices are divided such that each player receives the vertices that are closer to his or her claimed vertices. We prove that there are graphs for which the second player gets almost all vertices in this game, but this is not possible for bounded-degree graphs. For trees, the first player can get at least one quarter of the vertices, and we give examples where she can get only little more than one third of them. We make some general observations, relating the result with many rounds to the result for the one-round game on the same graph

    On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs

    Full text link
    We show that the maximum cardinality of an anti-chain composed of intersections of a given set of n points in the plane with half-planes is close to quadratic in n. We approach this problem by establishing the equivalence with the problem of the maximum monotone path in an arrangement of n lines. For a related problem on antichains in families of convex pseudo-discs we can establish the precise asymptotic bound: it is quadratic in n. The sets in such a family are characterized as intersections of a given set of n points with convex sets, such that the difference between the convex hulls of any two sets is nonempty and connected.Comment: 10 pages, 3 figures. revised version correctly attributes the idea of Section 3 to Tverberg; and replaced k-sets by "linearly separable sets" in the paper and the title. Accepted for publication in Israel Journal of Mathematic

    Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition

    Get PDF
    A geometric graph is angle-monotone if every pair of vertices has a path between them that---after some rotation---is xx- and yy-monotone. Angle-monotone graphs are 2\sqrt 2-spanners and they are increasing-chord graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in 2014 and proved that Gabriel triangulations are angle-monotone graphs. We give a polynomial time algorithm to recognize angle-monotone geometric graphs. We prove that every point set has a plane geometric graph that is generalized angle-monotone---specifically, we prove that the half-Ξ6\theta_6-graph is generalized angle-monotone. We give a local routing algorithm for Gabriel triangulations that finds a path from any vertex ss to any vertex tt whose length is within 1+21 + \sqrt 2 times the Euclidean distance from ss to tt. Finally, we prove some lower bounds and limits on local routing algorithms on Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Multi-triangulations as complexes of star polygons

    Get PDF
    Maximal (k+1)(k+1)-crossing-free graphs on a planar point set in convex position, that is, kk-triangulations, have received attention in recent literature, with motivation coming from several interpretations of them. We introduce a new way of looking at kk-triangulations, namely as complexes of star polygons. With this tool we give new, direct, proofs of the fundamental properties of kk-triangulations, as well as some new results. This interpretation also opens-up new avenues of research, that we briefly explore in the last section.Comment: 40 pages, 24 figures; added references, update Section

    Small grid embeddings of 3-polytopes

    Full text link
    We introduce an algorithm that embeds a given 3-connected planar graph as a convex 3-polytope with integer coordinates. The size of the coordinates is bounded by O(27.55n)=O(188n)O(2^{7.55n})=O(188^{n}). If the graph contains a triangle we can bound the integer coordinates by O(24.82n)O(2^{4.82n}). If the graph contains a quadrilateral we can bound the integer coordinates by O(25.46n)O(2^{5.46n}). The crucial part of the algorithm is to find a convex plane embedding whose edges can be weighted such that the sum of the weighted edges, seen as vectors, cancel at every point. It is well known that this can be guaranteed for the interior vertices by applying a technique of Tutte. We show how to extend Tutte's ideas to construct a plane embedding where the weighted vector sums cancel also on the vertices of the boundary face

    Finding the most relevant fragments in networks

    Get PDF
    We study a point pattern detection problem on networks, motivated by applications in geographical analysis, such as crime hotspot detection. Given a network N (a connected graph with non-negative edge lengths) together with a set of sites, which lie on the edges or vertices of N, we look for a connected subnetwork F of N of small total length that contains many sites. The edges of F can form parts of the edges of N. We consider different variants of this problem where N is either a general graph or restricted to a tree, and the subnetwork F that we are looking for is either a simple path or a tree. We give polynomial-time algorithms, NP-hardness and NP-completeness proofs, approximation algorithms, and also fixed-parameter tractable algorithms

    Repetitions in infinite palindrome-rich words

    Full text link
    Rich words are characterized by containing the maximum possible number of distinct palindromes. Several characteristic properties of rich words have been studied; yet the analysis of repetitions in rich words still involves some interesting open problems. We address lower bounds on the repetition threshold of infinite rich words over 2 and 3-letter alphabets, and construct a candidate infinite rich word over the alphabet ÎŁ2={0,1}\Sigma_2=\{0,1\} with a small critical exponent of 2+2/22+\sqrt{2}/2. This represents the first progress on an open problem of Vesti from 2017.Comment: 12 page
    • 

    corecore