259 research outputs found
Decomposition of Geometric Set Systems and Graphs
We study two decomposition problems in combinatorial geometry. The first part
deals with the decomposition of multiple coverings of the plane. We say that a
planar set is cover-decomposable if there is a constant m such that any m-fold
covering of the plane with its translates is decomposable into two disjoint
coverings of the whole plane. Pach conjectured that every convex set is
cover-decomposable. We verify his conjecture for polygons. Moreover, if m is
large enough, we prove that any m-fold covering can even be decomposed into k
coverings. Then we show that the situation is exactly the opposite in 3
dimensions, for any polyhedron and any we construct an m-fold covering of
the space that is not decomposable. We also give constructions that show that
concave polygons are usually not cover-decomposable. We start the first part
with a detailed survey of all results on the cover-decomposability of polygons.
The second part investigates another geometric partition problem, related to
planar representation of graphs. The slope number of a graph G is the smallest
number s with the property that G has a straight-line drawing with edges of at
most s distinct slopes and with no bends. We examine the slope number of
bounded degree graphs. Our main results are that if the maximum degree is at
least 5, then the slope number tends to infinity as the number of vertices
grows but every graph with maximum degree at most 3 can be embedded with only
five slopes. We also prove that such an embedding exists for the related notion
called slope parameter. Finally, we study the planar slope number, defined only
for planar graphs as the smallest number s with the property that the graph has
a straight-line drawing in the plane without any crossings such that the edges
are segments of only s distinct slopes. We show that the planar slope number of
planar graphs with bounded degree is bounded.Comment: This is my PhD thesi
Recommended from our members
Geometric Multicut
We study the following separation problem: Given a collection of colored objects in the plane, compute a shortest âfenceâ F, i.e., a union of curves of minimum total length, that separates every two objects of different colors. Two objects are separated if F contains a simple closed curve that has one object in the interior and the other in the exterior. We refer to the problem as GEOMETRIC k-CUT, where k is the number of different colors, as it can be seen as a geometric analogue to the well-studied multicut problem on graphs. We first give an O(n4log3n)-time algorithm that computes an optimal fence for the case where the input consists of polygons of two colors and n corners in total. We then show that the problem is NP-hard for the case of three colors. Finally, we give a (2â4/3k)-approximation algorithm
Advantage in the discrete Voronoi game
We study the discrete Voronoi game, where two players alternately claim vertices of a graph for t rounds. In the end, the remaining vertices are divided such that each player receives the vertices that are closer to his or her claimed vertices. We prove that there are graphs for which the second player gets almost all vertices in this game, but this is not possible for bounded-degree graphs. For trees, the first player can get at least one quarter of the vertices, and we give examples where she can get only little more than one third of them. We make some general observations, relating the result with many rounds to the result for the one-round game on the same graph
On the maximum size of an anti-chain of linearly separable sets and convex pseudo-discs
We show that the maximum cardinality of an anti-chain composed of
intersections of a given set of n points in the plane with half-planes is close
to quadratic in n. We approach this problem by establishing the equivalence
with the problem of the maximum monotone path in an arrangement of n lines. For
a related problem on antichains in families of convex pseudo-discs we can
establish the precise asymptotic bound: it is quadratic in n. The sets in such
a family are characterized as intersections of a given set of n points with
convex sets, such that the difference between the convex hulls of any two sets
is nonempty and connected.Comment: 10 pages, 3 figures. revised version correctly attributes the idea of
Section 3 to Tverberg; and replaced k-sets by "linearly separable sets" in
the paper and the title. Accepted for publication in Israel Journal of
Mathematic
Gabriel Triangulations and Angle-Monotone Graphs: Local Routing and Recognition
A geometric graph is angle-monotone if every pair of vertices has a path
between them that---after some rotation---is - and -monotone.
Angle-monotone graphs are -spanners and they are increasing-chord
graphs. Dehkordi, Frati, and Gudmundsson introduced angle-monotone graphs in
2014 and proved that Gabriel triangulations are angle-monotone graphs. We give
a polynomial time algorithm to recognize angle-monotone geometric graphs. We
prove that every point set has a plane geometric graph that is generalized
angle-monotone---specifically, we prove that the half--graph is
generalized angle-monotone. We give a local routing algorithm for Gabriel
triangulations that finds a path from any vertex to any vertex whose
length is within times the Euclidean distance from to .
Finally, we prove some lower bounds and limits on local routing algorithms on
Gabriel triangulations.Comment: Appears in the Proceedings of the 24th International Symposium on
Graph Drawing and Network Visualization (GD 2016
Minimum-weight triangulation is NP-hard
A triangulation of a planar point set S is a maximal plane straight-line
graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we
are looking for a triangulation of a given point set that minimizes the sum of
the edge lengths. We prove that the decision version of this problem is
NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the
gadgets is established with computer assistance, using dynamic programming on
polygonal faces, as well as the beta-skeleton heuristic to certify that certain
edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures.
This revision contains a few improvements in the expositio
Multi-triangulations as complexes of star polygons
Maximal -crossing-free graphs on a planar point set in convex
position, that is, -triangulations, have received attention in recent
literature, with motivation coming from several interpretations of them.
We introduce a new way of looking at -triangulations, namely as complexes
of star polygons. With this tool we give new, direct, proofs of the fundamental
properties of -triangulations, as well as some new results. This
interpretation also opens-up new avenues of research, that we briefly explore
in the last section.Comment: 40 pages, 24 figures; added references, update Section
Small grid embeddings of 3-polytopes
We introduce an algorithm that embeds a given 3-connected planar graph as a
convex 3-polytope with integer coordinates. The size of the coordinates is
bounded by . If the graph contains a triangle we can
bound the integer coordinates by . If the graph contains a
quadrilateral we can bound the integer coordinates by . The
crucial part of the algorithm is to find a convex plane embedding whose edges
can be weighted such that the sum of the weighted edges, seen as vectors,
cancel at every point. It is well known that this can be guaranteed for the
interior vertices by applying a technique of Tutte. We show how to extend
Tutte's ideas to construct a plane embedding where the weighted vector sums
cancel also on the vertices of the boundary face
Finding the most relevant fragments in networks
We study a point pattern detection problem on networks, motivated by applications in geographical analysis, such as crime hotspot detection. Given a network N (a connected graph with non-negative edge lengths) together with a set of sites, which lie on the edges or vertices of N, we look for a connected subnetwork F of N of small total length that contains many sites. The edges of F can form parts of the edges of N. We consider different variants of this problem where N is either a general graph or restricted to a tree, and the subnetwork F that we are looking for is either a simple path or a tree. We give polynomial-time algorithms, NP-hardness and NP-completeness proofs, approximation algorithms, and also fixed-parameter tractable algorithms
Repetitions in infinite palindrome-rich words
Rich words are characterized by containing the maximum possible number of
distinct palindromes. Several characteristic properties of rich words have been
studied; yet the analysis of repetitions in rich words still involves some
interesting open problems. We address lower bounds on the repetition threshold
of infinite rich words over 2 and 3-letter alphabets, and construct a candidate
infinite rich word over the alphabet with a small critical
exponent of . This represents the first progress on an open
problem of Vesti from 2017.Comment: 12 page
- âŠ