6 research outputs found

    Characterization of Respiration-Induced Motion in Prone Versus Supine Patient Positioning for Thoracic Radiation Therapy

    Get PDF
    Purpose Variations in the breathing characteristics, both on short term (intrafraction) and long term (interfraction) time scales, may adversely affect the radiation therapy process at all stages when treating lung tumors. Prone position has been shown to improve consistency (ie, reduced intrafraction variability) and reproducibility (ie, reduced interfraction variability) of the respiratory pattern with respect to breathing amplitude and period as a result of natural abdominal compression, with no active involvement required from the patient. The next natural step in investigating breathing-induced changes is to evaluate motion amplitude changes between prone and supine targets or organs at risk, which is the purpose of the present study. Methods and Materials Patients with lung cancer received repeat helical 4-dimensional computed tomography scans, one prone and one supine, during the same radiation therapy simulation session. In the maximum-inhale and maximum-exhale phases, all thoracic structures were delineated by an expert radiation oncologist. Geometric centroid trajectories of delineated structures were compared between patient orientations. Motion amplitude was measured as the magnitude of difference in structure centroid position between inhale and exhale. Results Amplitude of organ motion was larger when the patient was in the prone position compared with supine for all structures except the lower left lobe and left lung as a whole. Across all 12 patients, significant differences in mean motion amplitude between orientations were identified for the right lung (3.0 mm, P = .01), T2 (0.5 mm, P = .01) and T12 (2.1 mm, P \u3c .001) vertebrae, the middle third of the esophagus (4.0 mm, P = .03), and the lung tumor (1.7 mm, P = .02). Conclusions Respiration-induced thoracic organ motion was quantified in the prone position and compared with that of the supine position for 12 patients with thoracic lesions. The prone position induced larger organ motion compared with supine, particularly for the lung tumor, likely requiring increases in planning margins compared with supine

    Quantitative Assessment of Intra- and Inter-Modality Deformable Image Registration of the Heart, Left Ventricle, and Thoracic Aorta on Longitudinal 4D-CT and MR Images

    Get PDF
    Purpose Magnetic resonance imaging (MRI)-based investigations into radiotherapy (RT)-induced cardiotoxicity require reliable registrations of magnetic resonance (MR) imaging to planning computed tomography (CT) for correlation to regional dose. In this study, the accuracy of intra- and inter-modality deformable image registration (DIR) of longitudinal four-dimensional CT (4D-CT) and MR images were evaluated for heart, left ventricle (LV), and thoracic aorta (TA). Methods and materials Non-cardiac-gated 4D-CT and T1 volumetric interpolated breath-hold examination (T1-VIBE) MRI datasets from five lung cancer patients were obtained at two breathing phases (inspiration/expiration) and two time points (before treatment and 5 weeks after initiating RT). Heart, LV, and TA were manually contoured. Each organ underwent three intramodal DIRs ((A) CT modality over time, (B) MR modality over time, and (C) MR contrast effect at the same time) and two intermodal DIRs ((D) CT/MR multimodality at same time and (E) CT/MR multimodality over time). Hausdorff distance (HD), mean distance to agreement (MDA), and Dice were evaluated and assessed for compliance with American Association of Physicists in Medicine (AAPM) Task Group (TG)-132 recommendations. Results Mean values of HD, MDA, and Dice under all registration scenarios for each region of interest ranged between 8.7 and 16.8 mm, 1.0 and 2.6 mm, and 0.85 and 0.95, respectively, and were within the TG-132 recommended range (MDA \u3c 3 mm, Dice \u3e 0.8). Intramodal DIR showed slightly better results compared to intermodal DIR. Heart and TA demonstrated higher registration accuracy compared to LV for all scenarios except for HD and Dice values in Group A. Significant differences for each metric and tissue of interest were noted between Groups B and D and between Groups B and E. MDA and Dice significantly differed between LV and heart in all registrations except for MDA in Group E. Conclusions DIR of the heart, LV, and TA between non-cardiac-gated longitudinal 4D-CT and MRI across two modalities, breathing phases, and pre/post-contrast is acceptably accurate per AAPM TG-132 guidelines. This study paves the way for future evaluation of RT-induced cardiotoxicity and its related factors using multimodality DIR

    Evaluation of Image Registration Accuracy for Tumor and Organs at Risk in the Thorax for Compliance With TG 132 Recommendations

    Get PDF
    Purpose To evaluate accuracy for 2 deformable image registration methods (in-house B-spline and MIM freeform) using image pairs exhibiting changes in patient orientation and lung volume and to assess the appropriateness of registration accuracy tolerances proposed by the American Association of Physicists in Medicine Task Group 132 under such challenging conditions via assessment by expert observers. Methods and Materials Four-dimensional computed tomography scans for 12 patients with lung cancer were acquired with patients in prone and supine positions. Tumor and organs at risk were delineated by a physician on all data sets: supine inhale (SI), supine exhale, prone inhale, and prone exhale. The SI image was registered to the other images using both registration methods. All SI contours were propagated using the resulting transformations and compared with physician delineations using Dice similarity coefficient, mean distance to agreement, and Hausdorff distance. Additionally, propagated contours were anonymized along with ground-truth contours and rated for quality by physician-observers. Results Averaged across all patients, the accuracy metrics investigated remained within tolerances recommended by Task Group 132 (Dice similarity coefficient \u3e0.8, mean distance to agreement \u3c3 \u3emm). MIM performed better with both complex (vertebrae) and low-contrast (esophagus) structures, whereas the in-house method performed better with lungs (whole and individual lobes). Accuracy metrics worsened but remained within tolerances when propagating from supine to prone; however, the Jacobian determinant contained regions with negative values, indicating localized nonphysiologic deformations. For MIM and in-house registrations, 50% and 43.8%, respectively, of propagated contours were rated acceptable as is and 8.2% and 11.0% as clinically unacceptable. Conclusions The deformable image registration methods performed reliably and met recommended tolerances despite anatomically challenging cases exceeding typical interfraction variability. However, additional quality assurance measures are necessary for complex applications (eg, dose propagation). Human review rather than unsupervised implementation should always be part of the clinical registration workflow

    Quantitative assessment of radiotherapy-induced myocardial damage using MRI: a systematic review

    No full text
    Abstract Purpose To determine the role of magnetic resonance imaging (MRI)-based metrics to quantify myocardial toxicity following radiotherapy (RT) in human subjects through review of current literature. Methods Twenty-one MRI studies published between 2011-2022 were identified from available databases. Patients received chest irradiation with/without other treatments for various malignancies including breast, lung, esophageal cancer, Hodgkin’s, and non-Hodgkin’s lymphoma. In 11 longitudinal studies, the sample size, mean heart dose, and follow-up times ranged from 10-81 patients, 2.0-13.9 Gy, and 0-24 months after RT (in addition to a pre-RT assessment), respectively. In 10 cross-sectional studies, the sample size, mean heart dose, and follow-up times ranged from 5-80 patients, 2.1-22.9 Gy, and 2-24 years from RT completion, respectively. Global metrics of left ventricle ejection fraction (LVEF) and mass/dimensions of cardiac chambers were recorded, along with global/regional values of T1/T2 signal, extracellular volume (ECV), late gadolinium enhancement (LGE), and circumferential/radial/longitudinal strain. Results LVEF tended to decline at >20 years follow-up and in patients treated with older RT techniques. Changes in global strain were observed after shorter follow-up (13±2 months) for concurrent chemoradiotherapy. In concurrent treatments with longer follow-up (8.3 years), increases in left ventricle (LV) mass index were correlated with LV mean dose. In pediatric patients, increases in LV diastolic volume were correlated with heart/LV dose at 2 years post-RT. Regional changes were observed earlier post-RT. Dose-dependent responses were reported for several parameters, including: increased T1 signal in high-dose regions, a 0.136% increase of ECV per Gy, progressive increase of LGE with increasing dose at regions receiving >30 Gy, and correlation between increases in LV scarring volume and LV mean/V10/V25 Gy dose. Conclusion Global metrics only detected changes over longer follow-up, in older RT techniques, in concurrent treatments, and in pediatric patients. In contrast, regional measurements detected myocardial damage at shorter follow-up and in RT treatments without concurrent treatment and had greater potential for dose-dependent response. The early detection of regional changes suggests the importance of regional quantification of RT-induced myocardial toxicity at early stages, before damage becomes irreversible. Further works with homogeneous cohorts are required to examine this matter

    Rigid and Deformable Image Registration for Radiation Therapy: A Self-Study Evaluation Guide for NRG Oncology Clinical Trial Participation

    No full text
    PurposeThe registration of multiple imaging studies to radiation therapy computed tomography simulation, including magnetic resonance imaging, positron emission tomography-computed tomography, etc. is a widely used strategy in radiation oncology treatment planning, and these registrations have valuable roles in image guidance, dose composition/accumulation, and treatment delivery adaptation. The NRG Oncology Medical Physics subcommittee formed a working group to investigate feasible workflows for a self-study credentialing process of image registration commissioning.Methods and materialsThe American Association of Physicists in Medicine (AAPM) Task Group 132 (TG132) report on the use of image registration and fusion algorithms in radiation therapy provides basic guidelines for quality assurance and quality control of the image registration algorithms and the overall clinical process. The report recommends a series of tests and the corresponding metrics that should be evaluated and reported during commissioning and routine quality assurance, as well as a set of recommendations for vendors. The NRG Oncology medical physics subcommittee working group found incompatibility of some digital phantoms with commercial systems. Thus, there is still a need to provide further recommendations in terms of compatible digital phantoms, clinical feasible workflow, and achievable thresholds, especially for future clinical trials involving deformable image registration algorithms. Nine institutions participated and evaluated 4 commonly used commercial imaging registration software and various versions in the field of radiation oncology.Results and conclusionsThe NRG Oncology Working Group on image registration commissioning herein provides recommendations on the use of digital phantom/data sets and analytical software access for institutions and clinics to perform their own self-study evaluation of commercial imaging systems that might be employed for coregistration in radiation therapy treatment planning and image guidance procedures. Evaluation metrics and their corresponding values were given as guidelines to establish practical tolerances. Vendor compliance for image registration commissioning was evaluated, and recommendations were given for future development
    corecore