52 research outputs found
Catecholaminergic polymorphic ventricular tachycardia patients with multiple genetic variants in the PACES CPVT Registry.
BACKGROUND: Catecholaminergic polymorphic ventricular tachycardia (CPVT) is often a life-threatening arrhythmia disorder with variable penetrance and expressivity. Little is known about the incidence or outcomes of CPVT patients with ≥2 variants.
METHODS: The phenotypes, genotypes and outcomes of patients in the Pediatric and Congenital Electrophysiology Society CPVT Registry with ≥2 variants in genes linked to CPVT were ascertained. The American College of Medical Genetics & Genomics (ACMG) criteria and structural mapping were used to predict the pathogenicity of variants (3D model of pig RyR2 in open-state).
RESULTS: Among 237 CPVT subjects, 193 (81%) had genetic testing. Fifteen patients (8%) with a median age of 9 years (IQR 5-12) had ≥2 variants. Sudden cardiac arrest occurred in 11 children (73%), although none died during a median follow-up of 4.3 years (IQR 2.5-6.1). Thirteen patients (80%) had at least two RYR2 variants, while the remaining two patients had RYR2 variants plus variants in other CPVT-linked genes. Among all variants identified, re-classification of the commercial laboratory interpretation using ACMG criteria led to the upgrade from variant of unknown significance (VUS) to pathogenic/likely pathogenic (P/LP) for 5 variants, and downgrade from P/LP to VUS for 6 variants. For RYR2 variants, 3D mapping using the RyR2 model suggested that 2 VUS by ACMG criteria were P/LP, while 2 variants were downgraded to likely benign.
CONCLUSIONS: This severely affected cohort demonstrates that a minority of CPVT cases are related to ≥2 variants, which may have implications on family-based genetic counselling. While multi-variant CPVT patients were at high-risk for sudden cardiac arrest, there are insufficient data to conclude that this genetic phenomenon has prognostic implications at present. Further research is needed to determine the significance and generalizability of this observation. This study also shows that a rigorous approach to variant re-classification using the ACMG criteria and 3D mapping is important in reaching an accurate diagnosis, especially in the multi-variant population
Left Ventricular Systolic Dysfunction in Patients Diagnosed with Hypertrophic Cardiomyopathy during Childhood:Insights from the SHaRe Registry
BACKGROUND: The development of left ventricular systolic dysfunction (LVSD) in hypertrophic cardiomyopathy (HCM) is rare but serious and associated with poor outcomes in adults. Little is known about the prevalence, predictors, and prognosis of LVSD in patients diagnosed with HCM as children. METHODS:Data from patients with HCM in the international, multicenter SHaRe (Sarcomeric Human Cardiomyopathy Registry) were analyzed. LVSD was defined as left ventricular ejection fraction <50% on echocardiographic reports. Prognosis was assessed by a composite of death, cardiac transplantation, and left ventricular assist device implantation. Predictors of developing incident LVSD and subsequent prognosis with LVSD were assessed using Cox proportional hazards models. RESULTS: We studied 1010 patients diagnosed with HCM during childhood (<18 years of age) and compared them with 6741 patients with HCM diagnosed as adults. In the pediatric HCM cohort, median age at HCM diagnosis was 12.7 years (interquartile range, 8.0-15.3), and 393 (36%) patients were female. At initial SHaRe site evaluation, 56 (5.5%) patients with childhood-diagnosed HCM had prevalent LVSD, and 92 (9.1%) developed incident LVSD during a median follow-up of 5.5 years. Overall LVSD prevalence was 14.7% compared with 8.7% in patients with adult-diagnosed HCM. Median age at incident LVSD was 32.6 years (interquartile range, 21.3-41.6) for the pediatric cohort and 57.2 years (interquartile range, 47.3-66.5) for the adult cohort. Predictors of developing incident LVSD in childhood-diagnosed HCM included age <12 years at HCM diagnosis (hazard ratio [HR], 1.72 [CI, 1.13-2.62), male sex (HR, 3.1 [CI, 1.88-5.2), carrying a pathogenic sarcomere variant (HR, 2.19 [CI, 1.08-4.4]), previous septal reduction therapy (HR, 2.34 [CI, 1.42-3.9]), and lower initial left ventricular ejection fraction (HR, 1.53 [CI, 1.38-1.69] per 5% decrease). Forty percent of patients with LVSD and HCM diagnosed during childhood met the composite outcome, with higher rates in female participants (HR, 2.60 [CI, 1.41-4.78]) and patients with a left ventricular ejection fraction <35% (HR, 3.76 [2.16-6.52]). CONCLUSIONS: Patients with childhood-diagnosed HCM have a significantly higher lifetime risk of developing LVSD, and LVSD emerges earlier than for patients with adult-diagnosed HCM. Regardless of age at diagnosis with HCM or LVSD, the prognosis with LVSD is poor, warranting careful surveillance for LVSD, especially as children with HCM transition to adult care.</p
Heart Rate Recovery After Exercise Is Associated With Arrhythmic Events in Patients With Catecholaminergic Polymorphic Ventricular Tachycardia
BACKGROUND: Risk stratification in catecholaminergic polymorphic ventricular tachycardia remains ill defined. Heart rate recovery (HRR) immediately after exercise is regulated by autonomic reflexes, particularly vagal tone, and may be associated with symptoms and ventricular arrhythmias in patients with catecholaminergic polymorphic ventricular tachycardia. Our objective was to evaluate whether HRR after maximal exercise on the exercise stress test (EST) is associated with symptoms and ventricular arrhythmias. METHODS: In this retrospective observational study, we included patients ≤65 years of age with an EST without antiarrhythmic drugs who attained at least 80% of their age- and sex-predicted maximal HR. HRR in the recovery phase was calculated as the difference in heart rate (HR) at maximal exercise and at 1 minute in the recovery phase (ΔHRR1'). RESULTS: We included 187 patients (median age, 36 years; 68 [36%] symptomatic before diagnosis). Pre-EST HR and maximal HR were equal among symptomatic and asymptomatic patients. Patients who were symptomatic before diagnosis had a greater ΔHRR1' after maximal exercise (43 [interquartile range, 25-58] versus 25 [interquartile range, 19-34] beats/min; P<0.001). Corrected for age, sex, and relatedness, patients in the upper tertile for ΔHRR1' had an odds ratio of 3.4 (95% CI, 1.6-7.4) of being symptomatic before diagnosis (P<0.001). In addition, ΔHRR1' was higher in patients with complex ventricular arrhythmias at EST off antiarrhythmic drugs (33 [interquartile range, 22-48] versus 27 [interquartile range, 20-36] beats/min; P=0.01). After diagnosis, patients with a ΔHRR1' in the upper tertile of its distribution had significantly more arrhythmic events as compared with patients in the other tertiles (P=0.045). CONCLUSIONS: Catecholaminergic polymorphic ventricular tachycardia patients with a larger HRR following exercise are more likely to be symptomatic and have complex ventricular arrhythmias during the first EST off antiarrhythmic drug
Increased Ca2+ Transient Underlies RyR2-Related Left Ventricular Noncompaction
A loss-of-function cardiac ryanodine receptor (RyR2) mutation, I4855M+/-, has recently been linked to a new cardiac disorder termed RyR2 Ca2+ release deficiency syndrome (CRDS) as well as left ventricular noncompaction (LVNC). The mechanism by which RyR2 loss-of-function causes CRDS has been extensively studied, but the mechanism underlying RyR2 loss-of-function-associated LVNC is unknown. Here, we determined the impact of a CRDS-LVNC-associated RyR2-I4855M+/- loss-of-function mutation on cardiac structure and function.Peer reviewe
An International Multicenter Cohort Study on beta-Blockers for the Treatment of Symptomatic Children With Catecholaminergic Polymorphic Ventricular Tachycardia
Background: Symptomatic children with catecholaminergic polymorphic ventricular tachycardia (CPVT) are at risk for recurrent arrhythmic events. β-Blockers decrease this risk, but studies comparing individual β-blockers in sizeable cohorts are lacking. We aimed to assess the association between risk for arrhythmic events and type of β-blocker in a large cohort of symptomatic children with CPVT.Methods: From 2 international registries of patients with CPVT, RYR2 variant–carrying symptomatic children (defined as syncope or sudden cardiac arrest before β-blocker initiation and age at start of β-blocker therapy <18 years), treated with a β-blocker were included. Cox regression analyses with time-dependent covariates for β-blockers and potential confounders were used to assess the hazard ratio (HR). The primary outcome was the first occurrence of sudden cardiac death, sudden cardiac arrest, appropriate implantable cardioverter-defibrillator shock, or syncope. The secondary outcome was the first occurrence of any of the primary outcomes except syncope.Results: We included 329 patients (median age at diagnosis, 12 [interquartile range, 7–15] years, 35% females). Ninety-nine (30.1%) patients experienced the primary outcome and 74 (22.5%) experienced the secondary outcome during a median follow-up of 6.7 (interquartile range, 2.8–12.5) years. Two-hundred sixteen patients (66.0%) used a nonselective β-blocker (predominantly nadolol [n=140] or propranolol [n=70]) and 111 (33.7%) used a β1-selective β-blocker (predominantly atenolol [n=51], metoprolol [n=33], or bisoprolol [n=19]) as initial β-blocker. Baseline characteristics did not differ. The HRs for both the primary and secondary outcomes were higher for β1-selective compared with nonselective β-blockers (HR, 2.04 [95% CI, 1.31–3.17]; and HR, 1.99 [95% CI, 1.20–3.30], respectively). When assessed separately, the HR for the primary outcome was higher for atenolol (HR, 2.68 [95% CI, 1.44–4.99]), bisoprolol (HR, 3.24 [95% CI, 1.47–7.18]), and metoprolol (HR, 2.18 [95% CI, 1.08–4.40]) compared with nadolol, but did not differ from propranolol. The HR of the secondary outcome was only higher in atenolol compared with nadolol (HR, 2.68 [95% CI, 1.30–5.55]).Conclusions: β1-selective β-blockers were associated with a significantly higher risk for arrhythmic events in symptomatic children with CPVT compared with nonselective β-blockers, specifically nadolol. Nadolol, or propranolol if nadolol is unavailable, should be the preferred β-blocker for treating symptomatic children with CPVT.</p
- …