2,640 research outputs found

    Equivalent Fixed-Points in the Effective Average Action Formalism

    Full text link
    Starting from a modified version of Polchinski's equation, Morris' fixed-point equation for the effective average action is derived. Since an expression for the line of equivalent fixed-points associated with every critical fixed-point is known in the former case, this link allows us to find, for the first time, the analogous expression in the latter case.Comment: 30 pages; v2: 29 pages - major improvements to section 3; v3: published in J. Phys. A - minor change

    Sensitivity of Nonrenormalizable Trajectories to the Bare Scale

    Get PDF
    Working in scalar field theory, we consider RG trajectories which correspond to nonrenormalizable theories, in the Wilsonian sense. An interesting question to ask of such trajectories is, given some fixed starting point in parameter space, how the effective action at the effective scale, Lambda, changes as the bare scale (and hence the duration of the flow down to Lambda) is changed. When the effective action satisfies Polchinski's version of the Exact Renormalization Group equation, we prove, directly from the path integral, that the dependence of the effective action on the bare scale, keeping the interaction part of the bare action fixed, is given by an equation of the same form as the Polchinski equation but with a kernel of the opposite sign. We then investigate whether similar equations exist for various generalizations of the Polchinski equation. Using nonperturbative, diagrammatic arguments we find that an action can always be constructed which satisfies the Polchinski-like equation under variation of the bare scale. For the family of flow equations in which the field is renormalized, but the blocking functional is the simplest allowed, this action is essentially identified with the effective action at Lambda = 0. This does not seem to hold for more elaborate generalizations.Comment: v1: 23 pages, 5 figures, v2: intro extended, refs added, published in jphy

    Strain control of superlattice implies weak charge-lattice coupling in La0.5_{0.5}Ca0.5_{0.5}MnO3_3

    Full text link
    We have recently argued that manganites do not possess stripes of charge order, implying that the electron-lattice coupling is weak [Phys Rev Lett \textbf{94} (2005) 097202]. Here we independently argue the same conclusion based on transmission electron microscopy measurements of a nanopatterned epitaxial film of La0.5_{0.5}Ca0.5_{0.5}MnO3_3. In strain relaxed regions, the superlattice period is modified by 2-3% with respect to the parent lattice, suggesting that the two are not strongly tied.Comment: 4 pages, 4 figures It is now explained why the work provides evidence to support weak-coupling, and rule out charge orde

    On the Renormalization of Theories of a Scalar Chiral Superfield

    Full text link
    An exact renormalization group for theories of a scalar chiral superfield is formulated, directly in four dimensional Euclidean space. By constructing a projector which isolates the superpotential from the full Wilsonian effective action, it is shown that the nonperturbative nonrenormalization theorem follows, quite simply, from the flow equation. Next, it is argued that there do not exist any physically acceptable non-trivial fixed points. Finally, the Wess-Zumino model is considered, as a low energy effective theory. Following an evaluation of the one and two loop beta-function coefficients, to illustrate the ease of use of the formalism, it is shown that the beta-function in the massless case does not receive any nonperturbative power corrections.Comment: 52 pages, 4 figures; v2: 57 pages - refs added and some minor corrections/clarifications made; v3: published in JHEP - some further clarifications mad

    Multiple Page Recognition and Tracking for Augmented Books

    Full text link

    Chiral phase boundary of QCD at finite temperature

    Full text link
    We analyze the approach to chiral symmetry breaking in QCD at finite temperature, using the functional renormalization group. We compute the running gauge coupling in QCD for all temperatures and scales within a simple truncated renormalization flow. At finite temperature, the coupling is governed by a fixed point of the 3-dimensional theory for scales smaller than the corresponding temperature. Chiral symmetry breaking is approached if the running coupling drives the quark sector to criticality. We quantitatively determine the phase boundary in the plane of temperature and number of flavors and find good agreement with lattice results. As a generic and testable prediction, we observe that our underlying IR fixed-point scenario leaves its imprint in the shape of the phase boundary near the critical flavor number: here, the scaling of the critical temperature is determined by the zero-temperature IR critical exponent of the running coupling.Comment: 39 pages, 8 figure

    Functional renormalization group with a compactly supported smooth regulator function

    Full text link
    The functional renormalization group equation with a compactly supported smooth (CSS) regulator function is considered. It is demonstrated that in an appropriate limit the CSS regulator recovers the optimized one and it has derivatives of all orders. The more generalized form of the CSS regulator is shown to reduce to all major type of regulator functions (exponential, power-law) in appropriate limits. The CSS regulator function is tested by studying the critical behavior of the bosonized two-dimensional quantum electrodynamics in the local potential approximation and the sine-Gordon scalar theory for d<2 dimensions beyond the local potential approximation. It is shown that a similar smoothing problem in nuclear physics has already been solved by introducing the so called Salamon-Vertse potential which can be related to the CSS regulator.Comment: JHEP style, 11 pages, 2 figures, proofs corrected, accepted for publication by JHE
    corecore