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Abstract. This paper describes work on a framework for multi-agent
research using low cost Micro Aerial Vehicles (MAV’s). In the past this
type of research has required significant investment for both the vehi-
cles themselves and the infrastructure necessary to safely conduct ex-
periments. We present an alternative solution using a robust, low cost,
off the shelf platform. We demonstrate the capabilities of our system
via two typical multi-robot tasks: obstacle avoidance and exploration.
Developing multi-agent applications safely and quickly can be difficult
using hardware alone, to address this we also present a multi-quadcopter
simulation based around the Gazebo 3D simulator.

1 Introduction

Aerial robotics is a very exciting research field with many applications including
exploration, aerial transportation, construction and surveillance. Multi-rotors,
particularly quad-copters, have become popular due to their stability and ma-
neuverability, making it easier to navigate in complex environments. Their om-
nidirectional flying capabilities allow for simplified approaches to coordinated
pathfinding, obstacle avoidance, and other group movements, which makes multi-
rotors an ideal platform for multi-robot and multi-agent research. One major dif-
ficultly in multi-rotor research is the significant investment of both time and cap-
ital required to setup a safe, reliable framework with which to conduct research.
This discourages researchers from conducting any practical experimentation [10]
which leads to a knowledge gap.

This work attempts to bridge that gap and encourage more practical research
by providing a framework based on a low cost platform that does not require
dedicated infrastructure or expensive platforms to conduct safe, effective ex-
periments. For this work the Parrot AR.Drone1 quad-rotor, a relatively low cost
commercial toy developed for augmented reality games, was chosen as the exper-
imental platform. We develop a two-tiered software architecture for facilitating
multi-agent research with AR.Drone. At the lower level of our architecture we
provide the basic robotics tasks of agent localisation, position control and ob-
stacle avoidance. To do so, we extend the PTAM [3] key-frame-based monocular
SLAM system to provide localisation and mapping functions for multiple agents.

1 http://ardrone2.parrot.com/
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An Extended Kalman Filter (EKF) is used for state estimation and a PID con-
troller provides position control and path following. At the higher level we im-
plement collision avoidance based on the Optimal Reciproal Collision Obstacle
(ORCA) approach [19] and a multi-agent approach to autonomous flying where
each quadcopter agent communicates with it’s peers to achieve goals such as ex-
ploring an environment. The development and practical evaluation of meaningful
higher level multi-agent procedures requires extended experimentation, which is
hindered by the short flying time of the AR.Drone. To address this issue, we also
develop a simulation environment based on the Gazebo [12] 3D simulator. We
conduct both simulated and real world experiments to demonstrate the use of
our framework in a multi-agent exploration scenario and validate the veracity of
the simulation.

The remainder of the paper is organised as follows. In Section 2 we discuss
other approaches to using AR.Drone in single- or multi-robot research. In Sec-
tion 3 we present our framework in detail. Section 4 introduces the multi-agent
exploration scenario and the results and conclusion are discussed in Sections 5
and 6 respectively.

2 Related Work

While the low cost and highly robust construction make AR.Drone an ideal
platform for academic research, it is primarily a toy meant to be under human
control at all times, whose built-in functionality lacks the precision required for
the applications mentioned above. For example, while the AR.Drone features
optical flow based horizontal velocity estimation, which can be integrated for
position estimation (dead reckoning), it is subject to drift. This is unsurprising
as the inclusion of an optical flow sensor on the AR.Drone is mainly for position
hold rather than position estimation. Therefore a more robust drift-free position
estimation solution is required.

We are aware of three distinct solutions, which have been successfully tested
on the AR.Drone: using external high precision positioning devices, using fiducial
markers and using visual SLAM. Motion capture systems, such as the Vicon
system2, make use of a system of high-speed infrared cameras and retro-reflective
markers to estimate the full 3D pose of arbitrary bodies with sub-millimetre
precision. While a motion capture system would provide the highest accuracy
it comes with a significant price tag. Additionally many of these systems are
limited in the number of targets they can track (usually 4–6).

Fiducial markers, or tags, can either be placed on the robots themselves and
tracked using a fixed system of cameras [22] or the markers may be placed at
known locations in the environment and tracked by on-board cameras (e.g. [17]).
This system has the advantage of a high level of accuracy at very low cost.
However it does require significant setup and does limit the range of the robots
so as to be certain of their position the drones must always be able to see at
least one marker.

2 http://vicon.com/

http://vicon.com/


A third option is a feature-based localisation system, most notable is the
monocular SLAM system PTAM (Parallel Tracking and Mapping). This system
makes use of FAST [15] visual features and as such does not require fiducial
markers to be placed in the environment at know locations but simply requires
an environment with sufficient texture such as an office or lab space. PTAM
has been successfully employed for quad-copter localisation in in a single agent
configuration in a number of projects [2, 5, 6].

The main drawback for multi-robot needs is the lack of multi-camera support
in the original PTAM. Castle et al. [3], however, successfully demonstrated that
in an augmented reality setting, given the decoupled nature of the tracking and
map making processes which is a hallmark of the PTAM approach, it is possible
to implement multiple camera tracking and mapping (using a single shared map)
with relatively small effort. Castle et al. applied the problem of tracking a single
user in an augmented reality setting using two cameras. To the best of out
knowledge no one has previously applied the approach to multiple independent
cameras or multi-robot localisation and mapping.

3 Framework Architecture

Before giving detail on the low- and high-level architecture of our framework, we
briefly mention the two modifications of the original AR.Drone system that were
necessary for our framework to work. The drone features two cameras, the front
facing camera is capable of streaming images at 640×360 and is fitted with a 92◦

wide angle lens. The downward facing camera is primarily used for the on-board
optical flow and captures images at 160 × 120 which is upscaled to 640 × 360
for streaming. Our multi-robot scenario requires omni-directional flying, and we
found it difficult to keep control of the drone and avoid obstacles based on either
of the video streams: the resolution of the downward facing camera was too low
for reliable localisation, and the drone was flying into walls and obstacles while
moving in the direction not covered by the front-facing camera. Therefore, we
re-arranged the front-facing camera to look down. This is a very straightforward
modification due to the modular structure of the AR.Drone. As a result, the
drone can reliably avoid obstacles as long as they come upwards from the floor.

Another technical difficulty that we met was communication. The drone com-
municates via 802.11n WiFi which is used to stream control and sensor data as
well as a single compressed camera feed. The high bandwidth of the information
stream leads to communication latencies, especially when multiple drones are
deployed at the same time. Additionally, we found that there is a lot of inter-
ference on the 2.4GHz frequency range used by the drone due to various WiFi
networks in the proximity of our lab. We tried different options and it turned out
that enabling the WPA2 security protocol on the drone and the access point dra-
matically reduce the latency. Implementing this modification involves installing
a cross-compiled version of the open-source application wpa supplicant and re-
configuring the network settings of the AR.Drone.
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Fig. 1: The System Architecture

Our framework has been implemented in C++ and integrated into the Robot
Operating System (ROS) [14], each main component within our system has been
implemented as a separate ROS node meaning that in theory each component
could be run on a separate processor/computer adding to the scalability of our
framework.

3.1 Low-Level Architecture

In this section we describe the main components of our system. A general
overview of the key components of our system is shown in (Fig. 1). In what
follows we describe in detail the monocular visual SLAM system for mapping
and camera pose estimation, the Extended Kalman Filter (EKF) for camera
pose and inertial sensor data fusion and the PID based way-point controller.

Localisation and Mapping The framework makes use of the Monocular
keyframe-based SLAM package, PTAM, inspired by the work described in [11].
The original system introduced in [11] allowed only a single map to be built using
images from a single camera; it was later extended [3] to allow multiple maps
to be built using images from multiple cameras. We make use of this additional
functionality within our framework to allow multiple quadrotors to localise us-
ing, and contribute to, the same map. To this extent, we have extended the



system to create a PTAM tracking thread for each quadcopter. Each tracking
thread is responsible for generating a visual pose estimate using the underlying
PTAM tracking algorithm and fusing this with the additional sensor data using
the EKF (see next section). PTAM tracks the camera pose (position and ori-
entation) within the map which makes it necessary, for our purposes, to apply
a transformation (based on the physical location of the camera on the drone)
to obtain the PTAM estimate of drones pose. Pose estimates take the form of
position (x, y, z) and orientation (roll, pitch and yaw angles) i.e. PTAM pose for
drone i at time t is given by ptami

t = (x, y, z, Φ,Θ, Ψ).

State Estimation In addition to the horizontal velocity estimation the AR.Drone
also features an IMU (Inertial Measurement Unit) which measures the body
acceleration, angular velocity and angular orientation. These measurements are
fused on-board by a proprietary filter to give the estimated attitude of the drone.
We use this orientation estimate, together with the PTAM pose in an Extended
Kalman Filter [18] (EKF) to estimate the current position and orientation w.r.t
to the global world frame for each drone.

The sensor data from the drone comes from very low-cost sensors and as
such is subject to a significant amount of noise. The accuracy of the pose gener-
ated by PTAM can also vary depending on many factors such as the quality of
the map, ambient lighting conditions and the motion of the drone (fast move-
ments cause significant problems for rolling shutter cameras, like the ones on the
AR.Drone). Filtering is a common approach to extract useful information from
noisy/unreliable data, our framework makes use of an EKF to fuse the noisy
drone sensor data (imui

t) with uncertain PTAM poses (ptami
t) to produce a

more precise estimate of the drones pose given by ekf i
t.

The AR.Drone communicates via a WiFi link and there is no synchronisation
between video frames and IMU data, thus it is necessary to explicitly handle
the synchronisation of the data. Engel et al [6] do this by keeping a history
of observations between the time the last visual SLAM estimate was available
up to the current moment. When a new estimate is required the filter is rolled
forward up-to the required time, integrating all available measurements from the
observation buffer. This approach compensates for the delay/missed observations
that occur from the unreliability of the WiFi link to the drone. Our framework
extends this approach to a multi-robot scenario.

Position Control and Path Following We make use of traditional PID con-
trollers for x,y,z position and Yaw control. Input consists of the desired x,y,z
theta (or a sequence of positions for path following), an independent PID con-
troller for each degree of freedom calculates the control command necessary to
achieve the goal position. The gains for each PID controller were calibrated
experimentally and the values tested on multiple quad-copters.

Simulation For simulations we chose the Gazebo multi-robot simulator as it
provides capabilities to model complex 3d environments, reliably model multi-



Fig. 2: The simulation environment

ple flying vehicles and generate realistic sensor data including camera images.
Gazebo also integrates cleanly into the distributed infrastructure in ROS which
means we are able to test our framework on both the simulated and real robots
without altering the framework.

Meyer et al. [13] introduced a number of UAV-specific sensor plug-ins for
Gazebo such as barometers, GPS receivers and sonar rangers. In addition to this
they have created a comprehensive quadrotor simulation that includes accurate
flight dynamics. For this work we focused on accurate sensor modeling rather
than flight dynamics and as such our simulator uses a simplified flight dynamics
model that does not accurately model the aerodynamics and propulsion behavior
of the AR.Drone. We make use of Meyer et al’s simulator plug-ins to replicate
the sensor suite on the AR.Drone.

3.2 Higher-Level Architecture

We have implemented as easy to use interface to control the quadcopters based
on ROS messages and actions. The action paradigm in ROS allows the execution
of an action, e.g. move to a waypoint or follow a path, and provides facilities
to monitor execution of the action, determine the success/failure and preempt
a running action. High level agent code can be written in any of the supported
ROS programming languages including Python, C++, Java and Lisp using the
same interface.

Obstacle Avoidance In our initial experiments, for simplicity, we were fixing
the specific altitude at which each drone could operate thus avoiding colliding
with one another. This choice, however, limits drastically the number of drones
we could safely fly (especially indoors); therefore, a more robust solution was



Fig. 3: An example of frontier point extraction showing the downsampled point-
cloud and the frontier points (red arrows)

required. We assume that drones are the only dynamic obstacles in the environ-
ment. The velocity obstacle [8] (VO) is a representation of the set of all unsafe
velocities i.e. velocities that will eventually result in a collision. Van den Berg
et al. reasoned that in a multi-agent environment the other agents are not just
dynamic obstacles but reasoning agents who themselves take steps to avoid ob-
stacles. This leads to the notion of the reciprocal velocity obstacle [1] (RVO)
where each agent takes half the responsibility for avoiding the collision under
the assumption that all other agents reciprocate by taking complementary avoid-
ing action. To enable efficient calculation of safe velocities van den Berg et al.
introduced the Optimal Reciprocal Collision Avoidance (ORCA) [19] approach
which uses an efficient linear program to calculate the half-planes of collision
free velocities for each other agent. The intersection of all half-planes is the set
of collision free velocities.

We use the ORCA approach with a simple agent communication model, each
agent transmits it’s current position and velocity to all agents. At each time step
an agent will read in all available messages and calculate a safe velocity based
on it’s current goal and all the other agent positions and velocities. In ORCA
each agent is represented by a sphere of fixed radius, however this does not take
position uncertainty into account. We apply a similar approach to [9], where the
radius of the robots is varied according the uncertainty within the particle filter
used for localisation. In our framework we take into account not only the locali-
sation uncertainty but, as our flying robots also lack the comparatively accurate
velocity estimates from wheel odometry, we also account for the uncertainty in
velocity estimation. The main limitation of this approach is the reliance on com-
munication between the agents, an alternative would be to use relative sensing
similar to Conroy et al’s [4] work. However a drawback to that approach is the



limited field of view of the AR.Drones cameras mean only head on collisions
would be avoided, this is exacerbated by the fact the we relocated the front
facing camera to look down.

4 Cooperative Exploration with Auction Mechanisms

Our first goal with the framework was to develop a way to deploy a team of
AR.Drones to autonomously explore an environment. More formally given a map
m, consisting of k feature-points, how can we extract a set of interest points i ⊆ k
so that by assigning an AR.Drone to explore these interest points extends the
existing map m. This presents two challenges:

1. How to extract the set of interest points and
2. How to assign these tasks to the team of AR.Drones in an efficient manner

To address these two challenges we have developed an extension of our frame-
work that uses a frontier-based approach for interest point extraction and a
Sequential Single Item (SSI) auction approach for task assignment.

4.1 Interest Point Extraction

One of the most widely used exploration algorithms is the Frontier based algo-
rithm introduced in [20] and extended to multiple robots in [21]. We apply a
similar idea in our exploration strategy within our system; however, instead of
an occupancy grid map model we have a sparse pointcloud of natural features.

In order to extract frontier points from this sparse pointcloud we first down-
sample the pointcloud, to reduce the granularity. This has the added benefit of
improving the efficiency of the subsequent steps as the feature-map grows.

In order to build a reliable map each drone must be certain of it’s position
when adding new features, this means that each drone must keep a portion of the
existing feature map visible at all times in order to maintain good visual tracking.
Therefore the interest points must be sufficiently close to previously mapped
areas while still being sufficiently far away so new features can be discovered.
To achieve this we first project the set of feature points onto the ground plane
and compute the outliers/boundary points, these points represent the boundary
between know/mapped areas and unoccupied areas. Due to the down-sampling
step these points are sufficiently close to already mapped areas while still being
close enough to maintain stable tracking. Figure 3 shows an example of this
frontier point extraction process.

4.2 Auction Mechanism

In order to assign frontier points to drones we make use of a simple Sequential
Single Item (SSI) auction mechanism, which we adapted as follows:



Fig. 4: Plot of the ground truth position (left) and the estimated position (right)
Pose Estimation RMSE: 2.65cm

– On initiation the first set of frontier points is extracted from the current
map.

– Points are auctioned to the available drones. All points are auctioned off and
all drones bid on every point. Bids consists of path costs (linear distance
between all points on the path), where the path includes all the previous
points a particular drone has won. Therefore a drone bids on the cost of
adding the latest point to its existing goals, rather than on the properties of
these points.

– Once all points have been won the drones visit each of the frontier points
adding a new features to the map as they are discovered.

– After successfully completing their missions another round commences and
another frontier point extraction is carried out on the new expanded map.

– This process continues until no new points are added to the map or the
drones run low on battery.

5 Evaluation

Sufficient work has already gone into verifying the performance of PTAM-based
AR.Drone localisation w.r.t the ground truth [6,7,16]. Our system does not per-
form significantly differently from any of these system and as such our testing
extended to simply verifying our system performs in line with the results others
have reported. To that end we conducted several manual flight tests in simu-
lation and compared the estimated path to simulated ground truth. Figure 4
shows the results of one such test. As expected the performance is simulation



#AR.Drones =1 #AR.Drones =2 #AR.Drones =3

Time FP MP DP Time FP MP DP Time FP MP DP

900 86 21814 7567 437.76 74 21055 5820 310.84 79 18010 5017

900 192 21069 6582 467.47 82 20687 5852 353.23 79 19048 5949

900 161 22193 6813 434.01 69 17938 4746 316.33 74 17666 4559

900 146 19370 5992 403.89 74 17080 5063 487.04* 81 18298 5242

900* 125 12987 3767 508.34 86 19417 6167 332.15 74 16319 5200

Table 1: A table showing the results from 3 explorations experiments using one,
two and three drones, respectively. The table shows the time taken and the
number of: Frontier Points (FP), Map Points (MP) Deleted Map Points (DP)

is marginally better than other reported results this can be accounted for by
the lack of distortion and lighting effects in the camera images and the lack of
physical disturbances such as air wind, air flow disturbances from other drones.

Collision Avoidance We conducted collision avoidance experiments both in
simulation and in the real world. The simulated experiments featured 2-4 AR.Drones
and 75 experiments were conducted. The drones were instructed to follow inter-
secting paths, and the collision avoidance mechanism was tasked with resolving
the situation. Of the 75 simulated experiments conducted 73 collisions were
avoided, the 2 collisions that did occur were due to complete PTAM tracking
loss. The limited flying time and available resources made running real experi-
ments more difficult so we were only able to complete 12 experiments with the 2
AR.Drones we have available. Out of the 12 experiments 3 resulted in collisions,
with 9 collisions successfully avoided. Interestingly the 3 cases of collision were
a result of WiFi communications latency i.e the robots took avoiding measures
but did so too late to avoid the collision.

Exploration We conducted three sets of exploration experiments with teams
of 1, 2 and 3 drones. The experiments were conducted in the simulated envi-
ronment shown in Figure 2, the area consists of 20 x 17 metre area with the
take-off/landing location roughly in the centre. The environment model con-
sisted of piles of planks and damaged structures to simulate the exploration
of a disaster site. Additionally the use of large numbers of similar models was
designed to be particularly challenging for a Visual-SLAM based localisation
framework. The results from the exploration experiments are shown in Table
1, a timeout of 15 minutes was set for all experiments. It is interesting to note
that while 1 AR.Drone is not able to completely map the environment within the
time limit the number of map points found is larger particularly when comparing
the results from the single AR.Drone experiments to those of the 3 AR.Drone



experiments. This is accounted for by the fact that a single AR.Drone explor-
ing the frontiers of a map often has to cross from one side of the map to the
other and is able to find additional points within the existing map. Another
interesting case is the two simulated runs marked with a ‘*’. These cases high-
light the utility of using multiple agents for exploration tasks, there the single
robot became lost and the time taken to recover meant the AR.Drone mapped
significantly less (1200 points) of the environment. In the 3 robot case and this
resulted in some additional time but they were still able to produce a com-
plete map of similar size to the other 3 AR.Drone experiments. More details
of these experiments including videos can be found at the following web-page:
http://cgi.csc.liv.ac.uk/~rmw/drone.html

6 Conclusion

In this paper we have presented a framework for multi-agent research using
a low-cost quadcopter platform. We demonstrate the use of the framework on
two typical multi-robot tasks: collision avoidance and environment exploration.
Future work will involve improving the robustness of the collision avoidances
to tracking loss of a single/multiple drones by defining un-safe zones to avoid
when a drone has become lost. As mentioned we would also like to investigate
more complex interest point extraction and auctioning mechanisms to improve
the consistency and reliability of our exploration system. The main limitation
of the framework is the reliance of wireless communication for state estimation
and control, this limits the range of the AR.Drones and introduces problems of
latency and data loss. The release of many low-cost ARM-based development
boards such as the Raspberry Pi3 offer low cost and low power-consumption
solutions to adding on-board processing to the AR.Drone. This would allow us
to move time critical tasks such as tracking, control and collision avoidance on-
board the AR.Drone.
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