36 research outputs found

    Nonuniversal correlations in multiple scattering

    Full text link
    We show that intensity of a wave created by a source embedded inside a three-dimensional disordered medium exhibits a non-universal space-time correlation which depends explicitly on the short-distance properties of disorder, source size, and dynamics of disorder in the immediate neighborhood of the source. This correlation has an infinite spatial range and is long-ranged in time. We suggest that a technique of "diffuse microscopy" might be developed employing spatially-selective sensitivity of the considered correlation to the disorder properties.Comment: 15 pages, 3 postscript figures, accepted to Phys. Rev.

    Altered left atrial 4D flow characteristics in patients with paroxysmal atrial fibrillation in the absence of apparent remodeling

    Get PDF
    The pathophysiology behind thrombus formation in paroxysmal atrial fibrillation (AF) patients is very complex. This can be due to left atrial (LA) flow changes, remodeling, or both. We investigated differences for cardiovascular magnetic resonance (CMR)-derived LA 4D flow and remodeling characteristics between paroxysmal AF patients and patients without cardiac disease. In this proof-of-concept study, the 4D flow data were acquired in 10 patients with paroxysmal AF (age=61 +/- 8 years) and 5 age/gender matched controls (age=56 +/- 1 years) during sinus rhythm. The following LA and LA appendage flow parameters were obtained: flow velocity (mean, peak), stasis defined as the relative volume with velocities<10 cm/s, and kinetic energy (KE). Furthermore, LA global strain values were derived from b-SSFP cine images using dedicated CMR feature-tracking software. Even in sinus rhythm, LA mean and peak flow velocities over the entire cardiac cycle were significantly lower in paroxysmal AF patients compared to controls [(13.12.4 cm/s vs. 16.7 +/- 2.1 cm/s, p=0.01) and (19.3 +/- 4.7 cm/s vs. 26.8 +/- 5.5 cm/s, p=0.02), respectively]. Moreover, paroxysmal AF patients expressed more stasis of blood than controls both in the LA (43.2 +/- 10.8% vs. 27.8 +/- 7.9%, p=0.01) and in the LA appendage (73.3 +/- 5.7% vs. 52.8 +/- 16.2%, p=0.04). With respect to energetics, paroxysmal AF patients demonstrated lower mean and peak KE values (indexed to maximum LA volume) than controls. No significant differences were observed for LA volume, function, and strain parameters between the groups. Global LA flow dynamics in paroxysmal AF patients appear to be impaired including mean/peak flow velocity, stasis fraction, and KE, partly independent of LA remodeling. This pathophysiological flow pattern may be of clinical value to explain the increased incidence of thromboembolic events in paroxysmal AF patients, in the absence of actual AF or LA remodeling.Cardiovascular Aspects of Radiolog

    Don't judge the myocardium by its cover : The incremental value of cardiac magnetic resonance imaging in left ventricular hypertrophy

    Get PDF
    Contains fulltext : 190547.pdf (publisher's version ) (Open Access

    Feature tracking compared with tissue tagging measurements of segmental strain by cardiovascular magnetic resonance

    Get PDF
    BACKGROUND: Left ventricular segmental wall motion analysis is important for clinical decision making in cardiac diseases. Strain analysis with myocardial tissue tagging is the non-invasive gold standard for quantitative assessment, however, it is time-consuming. Cardiovascular magnetic resonance myocardial feature-tracking (CMR-FT) can rapidly perform strain analysis, because it can be employed with standard CMR cine-imaging. The aim is to validate segmental peak systolic circumferential strain (peak SCS) and time to peak systolic circumferential strain (T2P-SCS) analysed by CMR-FT against tissue tagging, and determine its intra and inter-observer variability. METHODS: Patients in whom both cine CMR and tissue tagging has been performed were selected. CMR-FT analysis was done using endocardial (CMR-FT(endo)) and mid-wall contours (CMR-FT(mid)). The Intra Class Correlation Coefficient (ICC) and Pearson correlation were calculated. RESULTS: 10 healthy volunteers, 10 left bundle branch block (LBBB) and 10 hypertrophic cardiomyopathy patients were selected. With CMR-FT all 480 segments were analyzable and with tissue tagging 464 segments. Significant differences in mean peak SCS values of the total study group were present between CMR-FT(endo) and tissue tagging (-23.8 ± 9.9% vs -13.4 ± 3.3%, p < 0.001). Differences were smaller between CMR-FT(mid) and tissue tagging (-16.4 ± 6.1% vs -13.4 ± 3.3%, p = 0.001). The ICC of the mean peak SCS of the total study group between CMR-FT(endo) and tissue tagging was low (0.19 (95%-CI-0.10-0.49), p = 0.02). Comparable results were seen between CMR-FT(mid) and tissue tagging. In LBBB patients, mean T2P-SCS values measured with CMR-FT(endo) and CMR-FT(mid) were 418 ± 66 ms, 454 ± 60 ms, which were longer than with tissue tagging, 376 ± 55 ms, both p < 0.05. ICC of the mean T2P-SCS between CMR-FT(endo) and tissue tagging was 0.64 (95%-CI-0.36-0.81), p < 0.001, this was better in the healthy volunteers and LBBB group, whereas the ICC between CMR-FT(mid) and tissue tagging was lower. The intra and inter-observer agreement of segmental peak SCS with CMR-FT(mid) was lower compared with tissue tagging; similar results were seen for segmental T2P-SCS. CONCLUSIONS: The intra and inter-observer agreement of segmental peak SCS and T2P-SCS is substantially lower with CMR-FT(mid) compared with tissue tagging. Therefore, current segmental CMR-FT(mid) techniques are not yet applicable for clinical and research purposes
    corecore