1,145 research outputs found

    Ultrafast Coherent Spectroscopy of the Fermi Edge Singularity

    Get PDF
    In this work we present a theoretical description of the transient response of the Fermi Edge Singularity (FES). We study the linear and the nonlinear response of an n-doped QW to laser pulses in the Coherent Control (CC) and Four Wave Mixing (FWM) Configurations. By means of a bosonization formalism we calculate the FWM signal emitted by the sample when it is excited by pulses spectrally peaked around the FES and we show that the long time behavior of the nonlinear signal is very similar to the linear case.Comment: Conference paper (13 EP2DS

    Exciton Beats in GaAs Quantum Wells: Bosonic Representation and Collective Effects

    Get PDF
    We discuss light-heavy hole beats observed in transient optical experiments in GaAs quantum wells in terms of a free-boson coherent state model. This approach is compared with descriptions based on few-level representations. Results lead to an interpretation of the beats as due to classical electromagnetic interference. The boson picture correctly describes photon excitation of extended states and accounts for experiments involving coherent control of the exciton density and Rayleigh scattering beating.Comment: 4 pages, no figures. Accepted for publication in Solid State Communication

    Exciton condensates in semiconductor quantum wells emit coherent light

    Full text link
    We show that a quasi-two dimensional condensate of optically active excitons emits coherent light even in the absence of population inversion. This allows an unambiguous and clear experimental detection of the condensed phase. We prove that, due to the exciton-photon coupling, quantum and thermal fluctuations do not destroy condensation at finite temperature. Suitable conditions to achieve condensation are temperatures of a few K for typical exciton densities, and the use of a pulsed, and preferably circularly polarized, laser.Comment: 5 pages, no figure

    Spin dynamics of current driven single magnetic adatoms and molecules

    Get PDF
    A scanning tunneling microscope can probe the inelastic spin excitations of a single magnetic atom in a surface via spin-flip assisted tunneling in which transport electrons exchange spin and energy with the atomic spin. If the inelastic transport time, defined as the average time elapsed between two inelastic spin flip events, is shorter than the atom spin relaxation time, the STM current can drive the spin out of equilibrium. Here we model this process using rate equations and a model Hamiltonian that describes successfully spin flip assisted tunneling experiments, including a single Mn atom, a Mn dimer and Fe Phthalocyanine molecules. When the STM current is not spin polarized, the non-equilibrium spin dynamics of the magnetic atom results in non-monotonic dI/dVdI/dV curves. In the case of spin polarized STM current, the spin orientation of the magnetic atom can be controlled parallel or anti-parallel to the magnetic moment of the tip. Thus, spin polarized STM tips can be used both to probe and to control the magnetic moment of a single atom.Comment: 15 pages, 12 figure

    Van der Waals spin valves

    Get PDF
    We propose spin valves where a 2D non-magnetic conductor is intercalated between two ferromagnetic insulating layers. In this setup, the relative orientation of the magnetizations of the insulating layers can have a strong impact on the in-plane conductivity of the 2D conductor. We first show this for a graphene bilayer, described with a tight-binding model, placed between two ferromagnetic insulators. In the anti-parallel configuration, a band gap opens at the Dirac point, whereas in the parallel configuration, the graphene bilayer remains conducting. We then compute the electronic structure of graphene bilayer placed between two monolayers of the ferromagnetic insulator CrI3_3, using density functional theory. Consistent with the model, we find that a gap opens at the Dirac point only in the antiparallel configuration.Comment: 5 pages, 4 figure

    Transport in magnetically ordered Pt nanocontacts

    Get PDF
    Pt nanocontacts, like those formed in mechanically controlled break junctions, are shown to develop spontaneous local magnetic order. Our density functional calculations predict that a robust local magnetic order exists in the atoms presenting low coordination, i. e., those forming the atom-sized neck. In contrast to previous work, we thus find that the electronic transport can be spin-polarized, although the net value of the conductance still agrees with available experimental information. Experimental implications of the formation of this new type of nanomagnet are discussed.Comment: 4 pages, 3 figure

    Adaptability

    Get PDF
    Adaptability is usually conceived as a psychological capacity that sustains adaptive behaviors, allowing one to face and manage stressors. It promotes adjustment between a person and its environment through a constant, dynamic, and dialectic interaction between them. Adaptability is conceptually and empirically distinct from dispositions such as personality or intelligence, but can be considered as a self-regulation process promoting an adequate person-environment fit (P-E fit), psychological health, and positive career-related outcomes, such as employability, employment, or work engagement. Adaptability evolves according to the circumstances and people can activate their adaptive abilities in adverse situations. Brief psychological interventions increase adaptability, which in turn improves employability and career success

    Optical control of the spin state of two Mn atoms in a quantum dot

    Get PDF
    We report on the optical spectroscopy of the spin of two magnetic atoms (Mn) embedded in an individual quantum dot interacting with either a single electron, a single exciton and single trion. As a result of their interaction to a common entity, the Mn spins become correlated. The dynamics of this process is probed by time resolved spectroscopy, that permits to determine the optical orientation time in the range of a few tens of nsns. In addition, we show that the energy of the collective spin states of the two Mn atoms can be tuned through the optical Stark effect induced by a resonant laser field

    Spin-phonon coupling in single Mn doped CdTe quantum dot

    Get PDF
    The spin dynamics of a single Mn atom in a laser driven CdTe quantum dot is addressed theoretically. Recent experimental results\cite{Le-Gall_PRL_2009,Goryca_PRL_2009,Le-Gall_PRB_2010}show that it is possible to induce Mn spin polarization by means of circularly polarized optical pumping. Pumping is made possible by the faster Mn spin relaxation in the presence of the exciton. Here we discuss different Mn spin relaxation mechanisms. First, Mn-phonon coupling, which is enhanced in the presence of the exciton. Second, phonon-induced hole spin relaxation combined with carrier-Mn spin flip coupling and photon emission results in Mn spin relaxation. We model the Mn spin dynamics under the influence of a pumping laser that injects excitons into the dot, taking into account exciton-Mn exchange and phonon induced spin relaxation of both Mn and holes. Our simulations account for the optically induced Mn spin pumping.Comment: 17 pages, 11 figures, submitted to PR

    Storage of classical information in quantum spins

    Get PDF
    Digital magnetic recording is based on the storage of a bit of information in the orientation of a magnetic system with two stable ground states. Here we address two fundamental problems that arise when this is done on a quantized spin: quantum spin tunneling and back-action of the readout process. We show that fundamental differences exist between integer and semi-integer spins when it comes to both, read and record classical information in a quantized spin. Our findings imply fundamental limits to the miniaturization of magnetic bits and are relevant to recent experiments where spin polarized scanning tunneling microscope reads and records a classical bit in the spin orientation of a single magnetic atom
    corecore