1,190 research outputs found
On the origin of magnetic anisotropy in two dimensional CrI
The observation of ferromagnetic order in a monolayer of CrI has been
recently reported, with a Curie temperature of 45 Kelvin and off-plane easy
axis. Here we study the origin of magnetic anisotropy, a necessary ingredient
to have magnetic order in two dimensions, combining two levels of modeling,
density functional calculations and spin model Hamiltonians. We find two
different contributions to the magnetic anisotropy of the material, both
favoring off-plane magnetization and contributing to open a gap in the spin
wave spectrum. First, ferromagnetic super-exchange across the 90
degree Cr-I-Cr bonds, are anisotropic, due to the spin orbit interaction of the
ligand I atoms. Second, a much smaller contribution that comes from the single
ion anisotropy of the Cr atom. Our results permit to establish the XXZ
Hamiltonian, with a very small single ion anisotropy, as the adequate spin
model for this system. Using spin wave theory we estimate the Curie temperature
and we highlight the essential role played by the gap that magnetic anisotropy
induces on the magnon spectrum.Comment: 8 pages, 5 figure
Noncollinear magnetic phases and edge states in graphene quantum Hall bars
Application of a perpendicular magnetic field to charge neutral graphene is
expected to result in a variety of broken symmetry phases, including
antiferromagnetic, canted and ferromagnetic. All these phases open a gap in
bulk but have very different edge states and non-collinear spin order, recently
confirmed experimentally. Here we provide an integrated description of both
edge and bulk for the various magnetic phases of graphene Hall bars making use
of a non-collinear mean field Hubbard model. Our calculations show that, at the
edges, the three types of magnetic order are either enhanced (zigzag) or
suppressed (armchair). Interestingly, we find that preformed local moments in
zigzag edges interact with the quantum Spin Hall like edge states of the
ferromagnetic phase and can induce back-scattering.Comment: 5 pages, 4 figure
Single exciton spectroscopy of semimagnetic quantum dots
A photo-excited II-VI semiconductor nanocrystal doped with a few Mn spins is
considered. The effects of spin-exciton interactions and the resulting
multi-spin correlations on the photoluminescence are calculated by numerical
diagonalization of the Hamiltonian, including exchange interaction between
electrons, holes and Mn spins, as well as spin-orbit interaction. The results
provide a unified description of recent experiments of photoluminesnce of dots
with one and many Mn atoms as well as optically induced ferromagnetism in
semimagnetic nanocrystals.Comment: 5 pages, 3 figure
Optical control of the spin state of two Mn atoms in a quantum dot
We report on the optical spectroscopy of the spin of two magnetic atoms (Mn)
embedded in an individual quantum dot interacting with either a single
electron, a single exciton and single trion. As a result of their interaction
to a common entity, the Mn spins become correlated. The dynamics of this
process is probed by time resolved spectroscopy, that permits to determine the
optical orientation time in the range of a few tens of . In addition, we
show that the energy of the collective spin states of the two Mn atoms can be
tuned through the optical Stark effect induced by a resonant laser field
Quantum spin Hall phase in multilayer graphene
The so called quantum spin Hall phase is a topologically non trivial
insulating phase that is predicted to appear in graphene and graphene-like
systems. In this work we address the question of whether this topological
property persists in multilayered systems. We consider two situations: purely
multilayer graphene and heterostructures where graphene is encapsulated by
trivial insulators with a strong spin-orbit coupling. We use a four orbital
tight-binding model that includes the full atomic spin-orbit coupling and we
calculate the topological invariant of the bulk states as well as the
edge states of semi-infinite crystals with armchair termination. For
homogeneous multilayers we find that even when the spin-orbit interaction opens
a gap for all the possible stackings, only those with odd number of layers host
gapless edge states while those with even number of layers are trivial
insulators. For the heterostructures where graphene is encapsulated by trivial
insulators, it turns out that the interlayer coupling is able to induce a
topological gap whose size is controlled by the spin-orbit coupling of the
encapsulating materials, indicating that the quantum spin Hall phase can be
induced by proximity to trivial insulators.Comment: 7 pages, 6 figure
Electronic Structure of gated graphene and graphene ribbons
We study the electronic structure of gated graphene sheets. We consider both
infinite graphene and finite width ribbons. The effect of Coulomb interactions
between the electrically injected carriers and the coupling to the external
gate are computed self-consistently in the Hartree approximation. We compute
the average density of extra carriers, , the number of occupied
subbands and the density profiles as a function of the gate potential . We
discuss quantum corrections to the classical capacitance and we calculate the
threshold above which semiconducting armchair ribbons conduct. We find
that the ideal conductance of perfectly transmitting wide ribbons is
proportional to the square root of the gate voltage.Comment: 8 pages, 6 figure
Performance limits of graphene-ribbon-based field effect transistors
The performance of field effect transistors based on an single graphene
ribbon with a constriction and a single back gate are studied with the help of
atomistic models. It is shown how this scheme, unlike that of traditional
carbon-nanotube-based transistors, reduces the importance of the specifics of
the chemical bonding to the metallic electrodes in favor of the carbon-based
part of device. The ultimate performance limits are here studied for various
constriction and metal-ribbon contact models. In particular we show that, even
for poorly contacting metals, properly taylored constrictions can give
promising values for both the on-conductance and the subthreshold swing.Comment: 5 pages, 4 figure
Spin splitting in a polarized quasi-two-dimensional exciton gas
We have observed a large spin splitting between "spin" and
heavy-hole excitons, having unbalanced populations, in undoped GaAs/AlAs
quantum wells in the absence of any external magnetic field. Time-resolved
photoluminescence spectroscopy, under excitation with circularly polarized
light, reveals that, for high excitonic density and short times after the
pulsed excitation, the emission from majority excitons lies above that of
minority ones. The amount of the splitting, which can be as large as 50% of the
binding energy, increases with excitonic density and presents a time evolution
closely connected with the degree of polarization of the luminescence. Our
results are interpreted on the light of a recently developed model, which shows
that, while intra-excitonic exchange interaction is responsible for the spin
relaxation processes, exciton-exciton interaction produces a breaking of the
spin degeneracy in two-dimensional semiconductors.Comment: Revtex, four pages; four figures, postscript file Accepted for
publication in Physical Review B (Rapid Commun.
Real space mapping of topological invariants using artificial neural networks
Topological invariants allow to characterize Hamiltonians, predicting the
existence of topologically protected in-gap modes. Those invariants can be
computed by tracing the evolution of the occupied wavefunctions under twisted
boundary conditions. However, those procedures do not allow to calculate a
topological invariant by evaluating the system locally, and thus require
information about the wavefunctions in the whole system. Here we show that
artificial neural networks can be trained to identify the topological order by
evaluating a local projection of the density matrix. We demonstrate this for
two different models, a 1-D topological superconductor and a 2-D quantum
anomalous Hall state, both with spatially modulated parameters. Our neural
network correctly identifies the different topological domains in real space,
predicting the location of in-gap states. By combining a neural network with a
calculation of the electronic states that uses the Kernel Polynomial Method, we
show that the local evaluation of the invariant can be carried out by
evaluating a local quantity, in particular for systems without translational
symmetry consisting of tens of thousands of atoms. Our results show that
supervised learning is an efficient methodology to characterize the local
topology of a system.Comment: 9 pages, 6 figure
- …