The performance of field effect transistors based on an single graphene
ribbon with a constriction and a single back gate are studied with the help of
atomistic models. It is shown how this scheme, unlike that of traditional
carbon-nanotube-based transistors, reduces the importance of the specifics of
the chemical bonding to the metallic electrodes in favor of the carbon-based
part of device. The ultimate performance limits are here studied for various
constriction and metal-ribbon contact models. In particular we show that, even
for poorly contacting metals, properly taylored constrictions can give
promising values for both the on-conductance and the subthreshold swing.Comment: 5 pages, 4 figure