43,361 research outputs found
Lateral conduction effects on heat-transfer data obtained with the phase-change paint technique
A computerized tool, CAPE, (Conduction Analysis Program using Eigenvalues) has been developed to account for lateral heat conduction in wind tunnel models in the data reduction of the phase-change paint technique. The tool also accounts for the effects of finite thickness (thin wings) and surface curvature. A special reduction procedure using just one time of melt is also possible on leading edges. A novel iterative numerical scheme was used, with discretized spatial coordinates but analytic integration in time, to solve the inverse conduction problem involved in the data reduction. A yes-no chart is provided which tells the test engineer when various corrections are large enough so that CAPE should be used. The accuracy of the phase-change paint technique in the presence of finite thickness and lateral conduction is also investigated
Afterglow lightcurves, viewing angle and the jet structure of gamma-ray bursts
Gamma ray bursts are often modelled as jet-like outflows directed towards the
observer; the cone angle of the jet is then commonly inferred from the time at
which there is a steepening in the power-law decay of the afterglow. We
consider an alternative model in which the jet has a beam pattern where the
luminosity per unit solid angle (and perhaps also the initial Lorentz factor)
decreases smoothly away from the axis, rather than having a well-defined cone
angle within which the flow is uniform. We show that the break in the afterglow
light curve then occurs at a time that depends on the viewing angle. Instead of
implying a range of intrinsically different jets - some very narrow, and others
with similar power spread over a wider cone - the data on afterglow breaks
could be consistent with a standardized jet, viewed from different angles. We
discuss the implication of this model for the luminosity function.Comment: Corrected typo in Eq. 1
4He adsorbed inside (10,10) single walled carbon nanotubes
Diffusion Monte Carlo calculations on the adsorption of He in open-ended
single walled (10,10) nanotubes are presented. We have found a first order
phase transition separating a low density liquid phase in which all He
atoms are adsorbed close to the tube wall and a high density arrangement
characterized by two helium concentric layers. The energy correction due to the
presence of neighboring tubes in a bundle has also been calculated, finding it
negligible in the density range considered.Comment: 5 pages, accepted for publication in Phys. Rev.
From quantum to elliptic algebras
It is shown that the elliptic algebra at the
critical level c=-2 has a multidimensional center containing some trace-like
operators t(z). A family of Poisson structures indexed by a non-negative
integer and containing the q-deformed Virasoro algebra is constructed on this
center. We show also that t(z) close an exchange algebra when p^m=q^{c+2} for m
integer, they commute when in addition p=q^{2k} for k integer non-zero, and
they belong to the center of when k is odd. The
Poisson structures obtained for t(z) in these classical limits contain the
q-deformed Virasoro algebra, characterizing the structures at generic values of
p, q and m as new algebras.Comment: LaTeX2e Document - packages subeqn,amsfont
Central extensions of classical and quantum q-Viraroso algebras
We investigate the central extensions of the q-deformed (classical and
quantum) Virasoro algebras constructed from the elliptic quantum algebra
A_{q,p}[sl(N)_c]. After establishing the expressions of the cocycle conditions,
we solve them, both in the classical and in the quantum case (for sl(2)). We
find that the consistent central extensions are much more general that those
found previously in the literature.Comment: Latex2e, needs amsfonts and amssymb package
Innovation, generative relationships and scaffolding structures: implications of a complexity perspective to innovation for public and private interventions
The linear model of innovation has been superseded by a variety of theoretical models that view the innovation process as systemic, complex, multi-level, multi-temporal, involving a plurality of heterogeneous economic agents. Accordingly, the emphasis of the policy discourse has changed over time. The focus has shifted from the direct public funding of basic research as an engine of innovation, to the creation of markets for knowledge goods, to, eventually, the acknowledgement that knowledge transfer very often requires direct interactions among innovating actors. In most cases, policy interventions attempt to facilitate the match between “demand” and “supply” of the knowledge needed to innovate. A complexity perspective calls for a different framing, one focused on the fostering of processes characterized by multiple agency levels, multiple temporal scales, ontological uncertainty and emergent outcomes. This contribution explores what it means to design interventions in support of innovation processes inspired by a complex systems perspective. It does so by analyzing two examples of coordinated interventions: a public policy funding innovating networks (with SMEs, research centers and university), and a private initiative, promoted by a network of medium-sized mechanical engineering firms, that supports innovation by means of technology brokerage. Relying on two unique datasets recording the interactions of the organizations involved in these interventions, social network analysis and qualitative research are combined in order to investigate network dynamics and the roles of specific actors in fostering innovation processes. Then, some general implications for the design of coordinated interventions supporting innovation in a complexity perspective are drawn
Deformed W_N algebras from elliptic sl(N) algebras
We extend to the sl(N) case the results that we previously obtained on the
construction of W_{q,p} algebras from the elliptic algebra
A_{q,p}(\hat{sl}(2)_c). The elliptic algebra A_{q,p}(\hat{sl}(N)_c) at the
critical level c=-N has an extended center containing trace-like operators
t(z). Families of Poisson structures indexed by N(N-1)/2 integers, defining
q-deformations of the W_N algebra, are constructed. The operators t(z) also
close an exchange algebra when (-p^1/2)^{NM} = q^{-c-N} for M in Z. It becomes
Abelian when in addition p=q^{Nh} where h is a non-zero integer. The Poisson
structures obtained in these classical limits contain different q-deformed W_N
algebras depending on the parity of h, characterizing the exchange structures
at p \ne q^{Nh} as new W_{q,p}(sl(N)) algebras.Comment: LaTeX2e Document - packages subeqn,amsfonts,amssymb - 30 page
- …