29,143 research outputs found

    Technical quality assessment of an optoelectronic system for movement analysis

    Get PDF
    The Optoelectronic Systems (OS) are largely used in gait analysis to evaluate the motor performances of healthy subjects and patients. The accuracy of marker trajectories reconstruction depends on several aspects: the number of cameras, the dimension and position of the calibration volume, and the chosen calibration procedure. In this paper we propose a methodology to evaluate the eects of the mentioned sources of error on the reconstruction of marker trajectories. The novel contribution of the present work consists in the dimension of the tested calibration volumes, which is comparable with the ones normally used in gait analysis; in addition, to simulate trajectories during clinical gait analysis, we provide non-default paths for markers as inputs. Several calibration procedures are implemented and the same trial is processed with each calibration le, also considering dierent cameras congurations. The RMSEs between the measured trajectories and the optimal ones are calculated for each comparison. To investigate the signicant dierences between the computed indices, an ANOVA analysis is implemented. The RMSE is sensible to the variations of the considered calibration volume and the camera congurations and it is always inferior to 43 mm

    Coherent phenomena in semiconductors

    Full text link
    A review of coherent phenomena in photoexcited semiconductors is presented. In particular, two classes of phenomena are considered: On the one hand the role played by optically-induced phase coherence in the ultrafast spectroscopy of semiconductors; On the other hand the Coulomb-induced effects on the coherent optical response of low-dimensional structures. All the phenomena discussed in the paper are analyzed in terms of a theoretical framework based on the density-matrix formalism. Due to its generality, this quantum-kinetic approach allows a realistic description of coherent as well as incoherent, i.e. phase-breaking, processes, thus providing quantitative information on the coupled ---coherent vs. incoherent--- carrier dynamics in photoexcited semiconductors. The primary goal of the paper is to discuss the concept of quantum-mechanical phase coherence as well as its relevance and implications on semiconductor physics and technology. In particular, we will discuss the dominant role played by optically induced phase coherence on the process of carrier photogeneration and relaxation in bulk systems. We will then review typical field-induced coherent phenomena in semiconductor superlattices such as Bloch oscillations and Wannier-Stark localization. Finally, we will discuss the dominant role played by Coulomb correlation on the linear and non-linear optical spectra of realistic quantum-wire structures.Comment: Topical review in Semiconductor Science and Technology (in press) (Some of the figures are not available in electronic form

    Strong coupling expansion of chiral models

    Full text link
    A general precedure is outlined for an algorithmic implementation of the strong coupling expansion of lattice chiral models on arbitrary lattices. A symbolic character expansion in terms of connected values of group integrals on skeleton diagrams may be obtained by a fully computerized approach.Comment: 2 pages, PostScript file, contribution to conference LATTICE '9

    Dust from AGBs: relevant factors and modelling uncertainties

    Get PDF
    The dust formation process in the winds of Asymptotic Giant Branch stars is discussed, based on full evolutionary models of stars with mass in the range 11M_{\odot} \leqM8\leq 8M_{\odot}, and metallicities 0.001<Z<0.0080.001 < Z <0.008. Dust grains are assumed to form in an isotropically expanding wind, by growth of pre--existing seed nuclei. Convection, for what concerns the treatment of convective borders and the efficiency of the schematization adopted, turns out to be the physical ingredient used to calculate the evolutionary sequences with the highest impact on the results obtained. Low--mass stars with M3\leq 3M_{\odot} produce carbon type dust with also traces of silicon carbide. The mass of solid carbon formed, fairly independently of metallicity, ranges from a few 10410^{-4}M_{\odot}, for stars of initial mass 11.51-1.5M_{\odot}, to 102\sim 10^{-2}M_{\odot} for M22.5\sim 2-2.5M_{\odot}; the size of dust particles is in the range 0.1μ0.1 \mumaC0.2μ\leq a_C \leq 0.2\mum. On the contrary, the production of silicon carbide (SiC) depends on metallicity. For 103Z8×10310^{-3} \leq Z \leq 8\times 10^{-3} the size of SiC grains varies in the range 0.05μm<aSiC<0.1μ0.05 \mu {\rm m} < {\rm a_{SiC}} < 0.1 \mum, while the mass of SiC formed is 105M<MSiC<103M10^{-5}{\rm M}_{\odot} < {\rm M_{SiC}} < 10^{-3}{\rm M}_{\odot}. Models of higher mass experience Hot Bottom Burning, which prevents the formation of carbon stars, and favours the formation of silicates and corundum. In this case the results scale with metallicity, owing to the larger silicon and aluminium contained in higher--Z models. At Z=8×1038\times 10^{-3} we find that the most massive stars produce dust masses md0.01m_d \sim 0.01M_{\odot}, whereas models of smaller mass produce a dust mass ten times smaller. The main component of dust are silicates, although corundum is also formed, in not negligible quantities (1020%\sim 10-20\%).Comment: Paper accepted for publication in Monthly Notices of the Royal Astronomical Society Main Journal (2014 January 4

    Automatically Discovering Hidden Transformation Chaining Constraints

    Get PDF
    Model transformations operate on models conforming to precisely defined metamodels. Consequently, it often seems relatively easy to chain them: the output of a transformation may be given as input to a second one if metamodels match. However, this simple rule has some obvious limitations. For instance, a transformation may only use a subset of a metamodel. Therefore, chaining transformations appropriately requires more information. We present here an approach that automatically discovers more detailed information about actual chaining constraints by statically analyzing transformations. The objective is to provide developers who decide to chain transformations with more data on which to base their choices. This approach has been successfully applied to the case of a library of endogenous transformations. They all have the same source and target metamodel but have some hidden chaining constraints. In such a case, the simple metamodel matching rule given above does not provide any useful information

    On the alumina dust production in the winds of O-rich Asymptotic Giant Branch stars

    Full text link
    The O-rich Asymptotic Giant Branch (AGB) stars experience strong mass loss with efficient dust condensation and they are major sources of dust in the interstellar medium. Alumina dust (Al2_2O3_3) is an important dust component in O-rich circumstellar shells and it is expected to be fairly abundant in the winds of the more massive and O-rich AGB stars. By coupling AGB stellar nucleosynthesis and dust formation, we present a self-consistent exploration on the Al2_2O3_3 production in the winds of AGB stars with progenitor masses between \sim3 and 7 M_{\odot} and metallicities in the range 0.0003 \le Z \le 0.018. We find that Al2_2O3_3 particles form at radial distances from the centre between 2\sim2 and 4 R_* (depending on metallicity), which is in agreement with recent interferometric observations of Galactic O-rich AGB stars. The mass of Al2_2O3_3 dust is found to scale almost linearly with metallicity, with solar metallicity AGBs producing the highest amount (about 103^{-3} M_{\odot}) of alumina dust. The Al2_2O3_3 grain size decreases with decreasing metallicity (and initial stellar mass) and the maximum size of the Al2_2O3_3 grains is \sim0.075 μm\mu m for the solar metallicity models. Interestingly, the strong depletion of gaseous Al observed in the low-metallicity HBB AGB star HV 2576 seems to be consistent with the formation of Al2_2O3_3 dust as predicted by our models. We suggest that the content of Al may be used as a mass (and evolutionary stage) indicator in AGB stars experiencing HBB.Comment: 13 pages, 8 figures, accepted for publication in MNRA

    Two dimensional SU(N)xSU(N) Chiral Models on the Lattice (II): the Green's Function

    Full text link
    Analytical and numerical methods are applied to principal chiral models on a two-dimensional lattice and their predictions are tested and compared. New techniques for the strong coupling expansion of SU(N) models are developed and applied to the evaluation of the two-point correlation function. The momentum-space lattice propagator is constructed with precision O(\beta^{10}) and an evaluation of the correlation length is obtained for several different definitions. Three-loop weak coupling contributions to the internal energy and to the lattice β\beta and γ\gamma functions are evaluated for all N, and the effect of adopting the ``energy'' definition of temperature is computed with the same precision. Renormalization-group improved predictions for the two-point Green's function in the weak coupling ( continuum ) regime are obtained and successfully compared with Monte Carlo data. We find that strong coupling is predictive up to a point where asymptotic scaling in the energy scheme is observed. Continuum physics is insensitive to the effects of the large N phase transition occurring in the lattice model. Universality in N is already well established for N10N \ge 10 and the large N physics is well described by a ``hadronization'' picture.Comment: Revtex, 37 pages, 16 figures available on request by FAX or mai

    Shape-independent scaling of excitonic confinement in realistic quantum wires

    Get PDF
    The scaling of exciton binding energy in semiconductor quantum wires is investigated theoretically through a non-variational, fully three-dimensional approach for a wide set of realistic state-of-the-art structures. We find that in the strong confinement limit the same potential-to-kinetic energy ratio holds for quite different wire cross-sections and compositions. As a consequence, a universal (shape- and composition-independent) parameter can be identified that governs the scaling of the binding energy with size. Previous indications that the shape of the wire cross-section may have important effects on exciton binding are discussed in the light of the present results.Comment: To appear in Phys. Rev. Lett. (12 pages + 2 figures in postscript

    Large-N phase transition in lattice 2-d principal chiral models

    Full text link
    We investigate the large-N critical behavior of 2-d lattice chiral models by Monte Carlo simulations of U(N) and SU(N) groups at large N. Numerical results confirm strong coupling analyses, i.e. the existence of a large-N second order phase transition at a finite βc\beta_c.Comment: 12 pages, Revtex, 8 uuencoded postscript figure

    AGB stars in the SMC: evolution and dust properties based on Spitzer observations

    Get PDF
    We study the population of asymptotic giant branch (AGB) stars in the Small Magellanic Cloud (SMC) by means of full evolutionary models of stars of mass 1Msun < M < 8Msun, evolved through the thermally pulsing phase. The models also account for dust production in the circumstellar envelope. We compare Spitzer infrared colours with results from theoretical modelling. We show that ~75% of the AGB population of the SMC is composed by scarcely obscured objects, mainly stars of mass M < 2.5Msun at various metallicity, formed between 700 Myr and 5 Gyr ago; ~ 70% of these sources are oxygen--rich stars, while ~ 30% are C-stars. The sample of the most obscured AGB stars, accounting for ~ 25% of the total sample, is composed almost entirely by carbon stars. The distribution in the colour-colour ([3.6]-[4.5], [5.8]-[8.0]) and colour-magnitude ([3.6]-[8.0], [8.0]) diagrams of these C-rich objects, with a large infrared emission, traces an obscuration sequence, according to the amount of carbonaceous dust in their surroundings. The overall population of C-rich AGB stars descends from 1.5-2Msun stars of metallicity Z=0.004, formed between 700 Myr and 2 Gyr ago, and from lower metallicity objects, of mass below 1.5Msun, 2-5 Gyr old. We also identify obscured oxygen-rich stars (M ~ 4-6Msun) experiencing hot bottom burning. The differences between the AGB populations of the SMC and LMC are also commented.Comment: 18, pages, 11 figures, accepted for publication on MNRA
    corecore