1,243 research outputs found

    The long non-coding RNA Kcnq1ot1 controls maternal p57 expression in muscle cells by promoting H3K27me3 accumulation to an intragenic MyoD-binding region

    Get PDF
    BACKGROUND: The cell-cycle inhibitor p57kip2 plays a critical role in mammalian development by coordinating cell proliferation and differentiation in many cell types. p57kip2 expression is finely regulated by several epigenetic mechanisms, including paternal imprinting. Kcnq1ot1, a long non-coding RNA (LncRNA), whose gene maps to the p57Kip2 imprinting domain, is expressed exclusively from the paternal allele and participates in the cis-silencing of the neighboring imprinted genes through chromatin-level regulation. In light of our previous evidence of a functional interaction between myogenic factors and imprinting control elements in the regulation of the maternal p57Kip2 allele during muscle differentiation, we examined the possibility that also Kcnq1ot1 could play an imprinting-independent role in the control of p57Kip2 expression in muscle cells. RESULTS: We found that Kcnq1ot1 depletion by siRNA causes the upregulation of the maternal and functional p57Kip2 allele during differentiation, suggesting a previously undisclosed role for this LncRNA. Consistently, Chromatin Oligo-affinity Precipitation assays showed that Kcnq1ot1 physically interacts not only with the paternal imprinting control region of the locus, as already known, but also with both maternal and paternal alleles of a novel p57Kip2 regulatory region, located intragenically and containing two binding sites for the muscle-specific factor MyoD. Moreover, chromatin immunoprecipitation assays after Kcnq1ot1 depletion demonstrated that the LncRNA is required for the accumulation of H3K27me3, a chromatin modification catalyzed by the histone-methyl-transferase EZH2, at the maternal p57kip2 intragenic region. Finally, upon differentiation, the binding of MyoD to this region and its physical interaction with Kcnq1ot1, analyzed by ChIP and RNA immunoprecipitation assays, correlate with the loss of EZH2 and H3K27me3 from chromatin and with p57Kip2 de-repression. CONCLUSIONS: These findings highlight the existence of an imprinting-independent role of Kcnq1ot1, adding new insights into the biology of a still mysterious LncRNA. Moreover, they expand our knowledge about the molecular mechanisms underlying the tight and fine regulation of p57Kip2 during differentiation and, possibly, its aberrant silencing observed in several pathologic conditions

    A cross-talk between DNA methylation and H3 lysine 9 dimethylation at the KvDMR1 region controls the induction of Cdkn1c in muscle cells

    Get PDF
    The cdk inhibitor p57kip2, encoded by the Cdkn1c gene, plays a critical role in mammalian development and in the differentiation of several tissues. Cdkn1c protein levels are carefully regulated via imprinting and other epigenetic mechanisms affecting both the promoter and distant regulatory elements, which restrict its expression to particular developmental phases or specific cell types. Inappropriate activation of these regulatory mechanisms leads to Cdkn1c silencing, causing growth disorders and cancer. We have previously reported that, in skeletal muscle cells, induction of Cdkn1c expression requires the binding of the bHLH myogenic factor MyoD to a long-distance regulatory element within the imprinting control region KvDMR1. Interestingly, MyoD binding to KvDMR1 is prevented in myogenic cell types refractory to the induction of Cdkn1c. In the present work, we took advantage of this model system to investigate the epigenetic determinants of the differential interaction of MyoD with KvDMR1. We show that treatment with the DNA demethylating agent 5-azacytidine restores the binding of MyoD to KvDMR1 in cells unresponsive to Cdkn1c induction. This, in turn, promotes the release of a repressive chromatin loop between KvDMR1 and Cdkn1c promoter and, thus, the upregulation of the gene. Analysis of the chromatin status of Cdkn1c promoter and KvDMR1 in unresponsive compared to responsive cell types showed that their differential responsiveness to the MyoD-dependent induction of the gene does not involve just their methylation status but, rather, the differential H3 lysine 9 dimethylation at KvDMR1. Finally, we report that the same histone modification also marks the KvDMR1 region of human cancer cells in which Cdkn1c is silenced. On the basis of these results, we suggest that the epigenetic status of KvDMR1 represents a critical determinant of the cell type-restricted expression of Cdkn1c and, possibly, of its aberrant silencing in some pathological conditions

    Cronache dalla Gazzetta di Venezia dell'anno 1868

    Get PDF
    At the end of the Austrian domination, the city of Venice lived in a critical situation characterized by an elevated rate of poverty and a dramatic lack of trades. In the years between 1866 and 1868, aiming to improve the Italian commercial activities and to restore the city to its former glory, a group of venetian delegations supported the establishment of a 'Scuola superiore di commercio' in Venice, that was officially founded in 1868. The School was realized in order to become a national and european model of high studies, educating students on the field of economics and commerce and introducing them at the careers as experts, consuls or professors. Through the articles published on the Gazzetta di Venezia in 1868, the essay retraces a complete report of the most important events and negotiations that brought to the opening of the School

    Influence of genetics on tumoral pathologies: The example of the adenocarcinoma arising in Barrett's esophagus

    Get PDF
    Barrett's esophagus (BE) refers to an abnormal change (metaplasia) in the cells of the inferior portion of the esophagus. About 10% of patients with symptomatic gastroesophageal reflux disease (GERD) have BE. In some cases, BE develops as an advanced stage of erosive esophagitis. The risk of esophageal cancer appears to be increased in patients with BE. The only way to diagnose BE is by endoscopy and histology. Some studies suggest that intensive treatment of Barrett's esophagus with effective acid suppression can reduce the amount of abnormal lining in the esophagus. It is not clear whether such treatment also prevents esophageal cancer. Generally, the cancer starts out as carcinoma of the esophagus on the surface, and then invades the surrounding tissue. Surgery offers the best chance of long-term survival. There are many events that occur in Barrett's esophagus that lead to the development of cancer and most of them appear to occur early, before high-grade dysplasia or cancer develops. No one knows what the late events are and how cells acquire the ability to leave their normal growth boundaries. It is now widely accepted that the development of most cancers is due to something called genomic or genetic instability. The aim of this review is to show BE pathology in its progression to cancer looking for new biomarkers to distinguish between BE-dysplasia (low grade and high grade)- adenocarcinoma (ADC) and to characterize the ADC, giving more hope for its treatment

    Leptin activates the anandamide hydrolase promoter in human T lymphocytes through STAT3

    Get PDF
    Physiological concentrations of leptin stimulate the activity of the endocannabinoid-degrading enzyme anandamide hydrolase (fatty acid amide hydrolase, FAAH) in human T lymphocytes up to approximately 300% over the untreated controls. Stimulation of FAAH occurred through up-regulation of gene expression at transcriptional and translational levels and involved binding of leptin to its receptor with an apparent dissociation constant (K(d)) of 1.95 +/- 0.14 nm and maximum binding (B(max)) of 392 +/- 8 fmol x mg protein(-1). Leptin binding to the receptor triggered activation of STAT3 but not STAT1 or STAT5 or the mitogen-activated protein kinases p38, p42, and p44. Peripheral lymphocytes of leptin knock-out (ob/ob) mice showed decreased FAAH activity and expression (approximately 25% of the wild-type littermates), which were reversed to control levels by exogenous leptin. Analysis of the FAAH promoter showed a cAMP-response element-like site, which is a transcriptional target of STAT3. Consistently, mutation of this site prevented FAAH activation by leptin in transient expression assays. Electrophoretic mobility shift and supershift assays further corroborated the promoter activity data. Taken together, these results suggest that leptin, by up-regulating the FAAH promoter through STAT3, enhances FAAH expression, thus tuning the immunomodulatory effects of anandamide. These findings might also have critical implications for human fertility

    Progesterone activates fatty acid amide hydrolase (FAAH) promoter in human T lymphocytes through the transcription factor Ikaros. Evidence for a synergistic effect of leptin.

    Get PDF
    Physiological concentrations of progesterone stimulate the activity of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) in human T lymphocytes, up to a ∼270% over the untreated controls. Stimulation of FAAH occurred through up-regulation of gene expression at transcriptional and translational level and was specific. Indeed, neither the activity of the anandamide-synthesizing N-acyltransferase and phospholipase D, nor the activity of the anandamide transporter, nor the binding to cannabinoid receptors were affected by progesterone under the same experimental conditions. The activation of FAAH by progesterone was paralleled by a decrease (down to 60%) of the cellular levels of anandamide and involved increased nuclear levels of the transcription factor Ikaros. Analysis of the FAAH promoter showed an Ikaros binding site, and mutation of this site prevented FAAH activation by progesterone in transient expression assays. Electrophoretic mobility shift and supershift assays further corroborated the promoter activity data. Furthermore, the effect of progesterone on FAAH promoter was additive to that of physiological amounts of leptin, which binds to a cAMP response element-like site in the promoter region. Taken together, these results suggest that progesterone and leptin, by up-regulating the FAAH promoter at different sites, enhance FAAH expression, thus tuning the immunomodulatory effects of anandamide. These findings might also have critical implications for human fertility

    Poly(ADP-ribose) Polymerase 1 (PARP1) restrains MyoD-dependent gene expression during muscle differentiation

    Get PDF
    The myogenic factor MyoD regulates skeletal muscle differentiation by interacting with a variety of chromatin-modifying complexes. Although MyoD can induce and maintain chromatin accessibility at its target genes, its binding and trans-activation ability can be limited by some types of not fully characterized epigenetic constraints. In this work we analysed the role of PARP1 in regulating MyoD-dependent gene expression. PARP1 is a chromatin-associated enzyme, playing a well recognized role in DNA repair and that is implicated in transcriptional regulation. PARP1 affects gene expression through multiple mechanisms, often involving the Poly(ADP-ribosyl)ation of chromatin proteins. In line with PARP1 down-regulation during differentiation, we observed that PARP1 depletion boosts the up-regulation of MyoD targets, such as p57, myogenin, Mef2C and p21, while its re-expression reverts this effect. We also found that PARP1 interacts with some MyoD-binding regions and that its presence, independently of the enzymatic activity, interferes with MyoD recruitment and gene induction. We finally suggest a relationship between the binding of PARP1 and the loss of the activating histone modification H3K4me3 at MyoD-binding regions. This work highlights not only a novel player in the epigenetic control of myogenesis, but also a repressive and catalytic-independent mechanisms by which PARP1 regulates transcription

    Assessment of Long-Term Fermentability of PHA-Based Materials from Pure and Mixed Microbial Cultures for Potential Environmental Applications

    Get PDF
    The use of polyhydroxyalkanoates (PHA) as slow-release electron donors for environmental remediation represents a novel and appealing application that is attracting considerable attention in the scientific community. In this context, here, the fermentation pattern of different types of PHA-based materials has been investigated in batch and continuous-flow experiments. Along with commercially available materials, produced from axenic microbial cultures, PHA produced at pilot scale by mixed microbial cultures (MMC) using waste feedstock have been also tested. As a main finding, a rapid onset of volatile fatty acids (VFA) production was observed with a low-purity MMC-deriving material, consisting of microbial cells containing 56% (on weight basis) of intracellular PHA. Indeed, with this material a sustained, long-term production of organic acids (i.e., acetic, propionic, and butyric acids) was observed. In addition, the obtained yield of conversion into acids (up to 70% gVFA/gPHA) was higher than that obtained with the other tested materials, made of extracted and purified PHA. These results clearly suggest the possibility to directly use the PHA-rich cells deriving from the MMC production process, with no need of extraction and purification procedures, as a sustainable and effective carbon source bringing remarkable advantages from an economic and environmental point of view
    corecore