12 research outputs found

    The Demonstration of a Robotic External Leak Locator for the International Space Station

    Get PDF
    The International Space Station (ISS) and all currently conceivable future manned spacecraft are susceptible to mission impacts due to fluid/gas leaks to the exterior environment. For example, there is a well-known risk of ammonia leaks from the ISS External Active Thermal Control System (EATCS) loops and as of 2016 there was no method to locate them. It was, therefore, critical to develop a method for detecting and locating leaks to preserve vehicle health. The Robotic External Leak Locator (RELL) was developed and deployed to the ISS to provide this capability. An on-orbit validation and demonstration was successfully completed in December 2016 and leak locating operations occurred in February 2017. This paper discusses the results of these exercises including measurements of the environment around ISS, detection of a small ammonia leak and implementation of leak locating methodologies. RELL is a collaboration between NASA's Goddard Space Flight Center (GSFC) and Johnson Space Center (JSC) and was launched to the ISS as a Technology Demonstration Payload in December 2015 on Orbital-ATK Commercial Resupply Flight 4

    Natural and Induced Environment around the International Space Station (ISS) as Observed during On-Orbit Operations of the Robotic External Leak Locator (RELL)

    Get PDF
    Final Document is attached. The Robotic External Leak Locator (RELL) was deployed to the International Space Station (ISS) with the goal of detecting and locating on-orbit leaks around the ISS. Three activities to investigate and corroborate the background natural and induced environment of ISS were performed with RELL as part of the on-orbit validation and demonstration conducted in November December 2016. The first demonstration activity pointed RELL directly in the ram and wake directions for one orbit each. The ram facing measurements showed high partial pressure for mass-to-charge ratio 16, corresponding to atomic oxygen (AO), as well as the presence of mass-to-charge ratio 17. RELLs view in the wake-facing direction included more ISS structure and several Environmental Control and Life Support System (ECLSS) on-orbit vents were detected, including the Carbon Dioxide Removal Assembly (CDRA), Russian segment ECLSS, and Sabatier vents. The second demonstration activity pointed RELL at three faces of the P1 Truss segment. Effluents from ECLSS and European Space Agency (ESA) Columbus module on-orbit vents were detected by RELL. The partial pressures of mass-to-charge ratios 17 and 18 remained consistent with the first on-orbit activity of characterizing the natural environment. The third demonstration activity involved RELL scanning an Active Thermal Control System (ATCS) radiator. Three locations along the radiator were scanned and the angular position of RELL with respect to the radiator was varied. Mass-to-charge ratios 16 and 17 both had upward shifts in partial pressure when pointing toward the Radiator Beam Valve Modules (RBVMs), likely corresponding to a known, small ammonia leak

    International Space Station (ISS) Environmental Control and Life Support System (ECLSS) Vent Flow Reflection and Detection by Robotic External Leak Locator (RELL)

    Get PDF
    On-orbit Robotic External Leak Locator (RELL) (i.e., mass spectrometer and ion gauge) measurements on the International Space Station (ISS) are presented to show the detection of recurring Environmental Control and Life Support System (ECLSS) vents at multiple ISS locations and RELL pointing directions. The path of ECLSS effluents to the RELL detectors is not entirely obvious at some locations, but the data indicates that diffuse gas-surface reflection or scattering resulting from plume interaction with vehicle surfaces is responsible. RELL was also able to confirm the ISS ECLSS constituents and distinguish them from the ammonia leak based on the ion mass spectra and known venting times during its operation to locate a leak in the ISS port-side External Active Thermal Control System (EATCS) coolant loop

    Natural and Induced Environment Around the International Space Station (ISS) as Observed During On-Orbit Operations of the Robotic External Leak Locator (RELL)

    Get PDF
    The Robotic External Leak Locator (RELL) was deployed to the International Space Station (ISS) with the goal of detecting and locating on-orbit leaks around the ISS. Three activities to characterize the background natural and induced environment of ISS were performed with RELL as part of the on-orbit validation and demonstration conducted in November and December 2016. The first demonstration activity pointed RELL directly in the ram (+X) and wake (-X) directions for one orbit each. The ram facing measurements showed high partial pressure for mass-to-charge ratio 16, corresponding to atomic oxygen (AO), as well as the presence of mass-to-charge ratio 17. RELL's view in the wake-facing direction included more ISS structure and several Environmental Control and Life Support System (ECLSS) on-orbit vents were detected, including the Carbon Dioxide Removal Assembly (CDRA), Russian segment ECLSS, and Sabatier vents. The second demonstration activity pointed RELL at three faces of the P1 Truss segment. Effluents from ECLSS and European Space Agency (ESA) Columbus module on-orbit vents were detected by RELL. The partial pressures of mass-to-charge ratios 17 and 18 remained consistent with the first on-orbit activity of characterizing the natural environment. The third demonstration activity involved RELL scanning an Active Thermal Control System (ATCS) radiator. Three locations along the radiator were scanned and the angular position of RELL with respect to the radiator was varied. Mass-to-charge ratios 16 and 17 both had upward shifts in partial pressure when pointing toward the Radiator Beam Valve Modules (RBVMs), likely corresponding to a known, small ammonia leak

    Snowballs in Euclid and WFIRST Detectors

    Get PDF
    Snowballs are transient events observed in HgCdTe detectors with a sudden increase of charge in a few pixels. They appear between consecutive reads of the detector, after which the affected pixels return to their normal behavior. The origin of the snowballs is unknown, but it was speculated that they could be the result of alpha decay of naturally radioactive contaminants in the detectors, but a cosmic ray origin cannot be ruled out. Even though previous studies predicted a low rate of occurrence of these events, and consequently, a minimal impact on science, it is interesting to investigate the cause or causes that may generate snowballs and their impact in detectors designed for future missions. We searched for the presence of snowballs in the dark current data in Euclid and Wide Field Infrared Survey Telescope (WFIRST) detectors tested in the Detector Characterization Laboratory at Goddard Space Flight Center. Our investigation shows that for Euclid and WFIRST detectors, there are snowballs that appear only one time, and others that repeat in the same spatial localization. For Euclid detectors, there is a correlation between the snowballs that repeat and bad pixels in the operational masks (pixels that do not fulfill the requirements to pass spectroscopy noise, photometry noise, quantum efficiency, and/or linearity). The rate of occurrence for a snowball event is about 0.9 snowballs/hr. in Euclid detectors (for the ones that do not have associated bad pixels in the mask), and about 0.7 snowballs/hr. in PV3 Full Array Lot WFIRST detectors

    Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system

    No full text

    Palynology of the Middle Miocene—Pliocene Novo Remanso Formation, Central Amazonia, Brazil

    No full text

    Accident surgery of face and neck

    No full text
    corecore