4,444 research outputs found

    Cellular Therapies for Huntington’s Disease

    Get PDF

    Cloning, sequencing, and characterization of the hexahydro-1,3,5-trinitro-1,3,5-triazine degradation gene cluster from Rhodococcus rhodochrous

    Get PDF
    Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a high explosive which presents an environmental hazard as a major land and groundwater contaminant. Rhodococcus rhodochrous strain 11Y was isolated from explosive contaminated land and is capable of degrading RDX when provided as the sole source of nitrogen for growth. Products of RDX degradation in resting-cell incubations were analyzed and found to include nitrite, formaldehyde, and formate. No ammonium was excreted into the medium, and no dead-end metabolites were observed. The gene responsible for the degradation of RDX in strain 11Y is a constitutively expressed cytochrome P450-like gene, xpLA, which is found in a gene cluster with an adrenodoxin reductase homologue, xplB. The cytochrome P450 also has a flavodoxin domain at the N terminus. This study is the first to present a gene which has been identified as being responsible for RDX biodegradation. The mechanism of action of XplA on RDX is thought to involve initial denitration followed by spontaneous ring cleavage and mineralization

    Mini-Review: Gut-Microbiota and the Sex-Bias in Autoimmunity - Lessons Learnt From Animal Models

    Get PDF
    It is well appreciated that there is a female preponderance in the development of most autoimmune diseases. Thought to be due to a complex interplay between sex chromosome complement and sex-hormones, however, the exact mechanisms underlying this sex-bias remain unknown. In recent years, there has been a focus on understanding the central pathogenic role of the bacteria that live in the gut, or the gut-microbiota, in the development of autoimmunity. In this review, we discuss evidence from animal models demonstrating that the gut-microbiota is sexually dimorphic, that there is a bidirectional relationship between the production of sex-hormones and the gut-microbiota, and that this sexual dimorphism within the gut-microbiota may influence the sex-bias observed in autoimmune disease development. Collectively, these data underline the importance of considering sex as a variable when investigating biological pathways that contribute to autoimmune disease risk

    Gated rotation mechanism of site-specific recombination by ϕC31 integrase

    Get PDF
    Integrases, such as that of the Streptomyces temperate bacteriophage ϕC31, promote site-specific recombination between DNA sequences in the bacteriophage and bacterial genomes to integrate or excise the phage DNA. ϕC31 integrase belongs to the serine recombinase family, a large group of structurally related enzymes with diverse biological functions. It has been proposed that serine integrases use a “subunit rotation” mechanism to exchange DNA strands after double-strand DNA cleavage at the two recombining att sites, and that many rounds of subunit rotation can occur before the strands are religated. We have analyzed the mechanism of ϕC31 integrase-mediated recombination in a topologically constrained experimental system using hybrid “phes” recombination sites, each of which comprises a ϕC31 att site positioned adjacent to a regulatory sequence recognized by Tn3 resolvase. The topologies of reaction products from circular substrates containing two phes sites support a right-handed subunit rotation mechanism for catalysis of both integrative and excisive recombination. Strand exchange usually terminates after a single round of 180° rotation. However, multiple processive “360° rotation” rounds of strand exchange can be observed, if the recombining sites have nonidentical base pairs at their centers. We propose that a regulatory “gating” mechanism normally blocks multiple rounds of strand exchange and triggers product release after a single round

    Quantum Computer with Mixed States and Four-Valued Logic

    Full text link
    In this paper we discuss a model of quantum computer in which a state is an operator of density matrix and gates are general quantum operations, not necessarily unitary. A mixed state (operator of density matrix) of n two-level quantum systems is considered as an element of 4^n-dimensional operator Hilbert space (Liouville space). It allows to use a quantum computer model with four-valued logic. The gates of this model are general superoperators which act on n-ququat state. Ququat is a quantum state in a four-dimensional (operator) Hilbert space. Unitary two-valued logic gates and quantum operations for an n-qubit open system are considered as four-valued logic gates acting on n-ququat. We discuss properties of quantum four-valued logic gates. In the paper we study universality for quantum four-valued logic gates.Comment: 17 page

    FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation

    Get PDF
    Identifying the steps involved in striatal development is important both for understanding the striatum in health and disease, and for generating protocols to differentiate striatal neurons for regenerative medicine. The most prominent neuronal subtype in the adult striatum is the medium spiny projection neuron (MSN), which constitutes more than 85% of all striatal neurons and classically expresses DARPP-32. Through a microarray study of genes expressed in the whole ganglionic eminence (WGE: the developing striatum) in the mouse, we identified the gene encoding the transcription factor Forkhead box protein P1 (FoxP1) as the most highly up-regulated gene, thus providing unbiased evidence for the association of FoxP1 with MSN development. We also describe the expression of FoxP1 in the human fetal brain over equivalent gestational stages. FoxP1 expression persisted through into adulthood in the mouse brain, where it co-localised with all striatal DARPP-32 positive projection neurons and a small population of DARPP-32 negative cells. There was no co-localisation of FoxP1 with any interneuron markers. FoxP1 was detectable in primary fetal striatal cells following dissection, culture, and transplantation into the adult lesioned striatum, demonstrating its utility as an MSN marker for transplantation studies. Furthermore, DARPP-32 expression was absent from FoxP1 knock-out mouse WGE differentiated in vitro, suggesting that FoxP1 is important for the development of DARPP-32-positive MSNs. In summary, we show that FoxP1 labels MSN precursors prior to the expression of DARPP-32 during normal development, and in addition suggest that FoxP1 labels a sub-population of MSNs that are not co-labelled by DARPP-32. We demonstrate the utility of FoxP1 to label MSNs in vitro and following neural transplantation, and show that FoxP1 is required for DARPP-32 positive MSN differentiation in vitro

    Assembly and Misassembly of Cystic Fibrosis Transmembrane Conductance Regulator: Folding Defects Caused by Deletion of F508 Occur Before and After the Calnexin-dependent Association of Membrane Spanning Domain (MSD) 1 and MSD2

    Get PDF
    Cystic fibrosis transmembrane conductance regulator (CFTR) is a polytopic membrane protein that functions as a Cl− channel and consists of two membrane spanning domains (MSDs), two cytosolic nucleotide binding domains (NBDs), and a cytosolic regulatory domain. Cytosolic 70-kDa heat shock protein (Hsp70), and endoplasmic reticulum-localized calnexin are chaperones that facilitate CFTR biogenesis. Hsp70 functions in both the cotranslational folding and posttranslational degradation of CFTR. Yet, the mechanism for calnexin action in folding and quality control of CFTR is not clear. Investigation of this question revealed that calnexin is not essential for CFTR or CFTRΔF508 degradation. We identified a dependence on calnexin for proper assembly of CFTR's membrane spanning domains. Interestingly, efficient folding of NBD2 was also found to be dependent upon calnexin binding to CFTR. Furthermore, we identified folding defects caused by deletion of F508 that occurred before and after the calnexin-dependent association of MSD1 and MSD2. Early folding defects are evident upon translation of the NBD1 and R-domain and are sensed by the RMA-1 ubiquitin ligase complex

    Neonatal desensitisation for the study of regenerative medicine

    Get PDF
    Cell replacement is a therapeutic option for numerous diseases of the CNS. Current research has identified a number of potential human donor cell types, for which preclinical testing through xenotransplantation in animal models is imperative. Immune modulation is necessary to promote donor cell survival for sufficient time to assess safety and efficacy. Neonatal desensitization can promote survival of human donor cells in adult rat hosts with little impact on the health of the host and for substantially longer than conventional methods, and has subsequently been applied in a range of studies with variable outcomes. Reviewing these findings may provide insight into the method and its potential for use in preclinical studies in regenerative medicine

    Colloquium: Statistical mechanics of money, wealth, and income

    Full text link
    This Colloquium reviews statistical models for money, wealth, and income distributions developed in the econophysics literature since the late 1990s. By analogy with the Boltzmann-Gibbs distribution of energy in physics, it is shown that the probability distribution of money is exponential for certain classes of models with interacting economic agents. Alternative scenarios are also reviewed. Data analysis of the empirical distributions of wealth and income reveals a two-class distribution. The majority of the population belongs to the lower class, characterized by the exponential ("thermal") distribution, whereas a small fraction of the population in the upper class is characterized by the power-law ("superthermal") distribution. The lower part is very stable, stationary in time, whereas the upper part is highly dynamical and out of equilibrium.Comment: 24 pages, 13 figures; v.2 - minor stylistic changes and updates of references corresponding to the published versio

    Biomarkers Associated with Organ-Specific Involvement in Juvenile Systemic Lupus Erythematosus

    Get PDF
    Juvenile systemic lupus erythematosus (JSLE) is characterised by onset before 18 years of age and more severe disease phenotype, increased morbidity and mortality compared to adult-onset SLE. Management strategies in JSLE rely heavily on evidence derived from adult-onset SLE studies; therefore, identifying biomarkers associated with the disease pathogenesis and reflecting particularities of JSLE clinical phenotype holds promise for better patient management and improved outcomes. This narrative review summarises the evidence related to various traditional and novel biomarkers that have shown a promising role in identifying and predicting specific organ involvement in JSLE and appraises the evidence regarding their clinical utility, focusing in particular on renal biomarkers, while also emphasising the research into cardiovascular, haematological, neurological, skin and joint disease-related JSLE biomarkers, as well as genetic biomarkers with potential clinical applications
    • 

    corecore