15 research outputs found

    Finite amplitude wave propagation through bubbly fluids

    Full text link
    The existence of only a few bubbles could drastically reduce the acoustic wave speed in a liquid. Wood's equation models the linear sound speed, while the speed of an ideal shock waves is derived as a function of the pressure ratio across the shock. The common finite amplitude waves lie, however, in between these limits. We show that in a bubbly medium, the high frequency components of finite amplitude waves are attenuated and dissipate quickly, but a low frequency part remains. This wave is then transmitted by the collapse of the bubbles and its speed decreases with increasing void fraction. We demonstrate that the linear and the shock wave regimes can be smoothly connected through a Mach number based on the collapse velocity of the bubbles

    Bone marrow activation in response to metabolic syndrome and early atherosclerosis.

    Get PDF
    Experimental studies suggest that increased bone marrow (BM) activity is involved in the association between cardiovascular risk factors and inflammation in atherosclerosis. However, human data to support this association are sparse. The purpose was to study the association between cardiovascular risk factors, BM activation, and subclinical atherosclerosis. Whole body vascular 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) was performed in 745 apparently healthy individuals [median age 50.5 (46.8-53.6) years, 83.8% men] from the Progression of Early Subclinical Atherosclerosis (PESA) study. Bone marrow activation (defined as BM 18F-FDG uptake above the median maximal standardized uptake value) was assessed in the lumbar vertebrae (L3-L4). Systemic inflammation was indexed from circulating biomarkers. Early atherosclerosis was evaluated by arterial metabolic activity by 18F-FDG uptake in five vascular territories. Late atherosclerosis was evaluated by fully formed plaques on MRI. Subjects with BM activation were more frequently men (87.6 vs. 80.0%, P = 0.005) and more frequently had metabolic syndrome (MetS) (22.2 vs. 6.7%, P < 0.001). Bone marrow activation was significantly associated with all MetS components. Bone marrow activation was also associated with increased haematopoiesis-characterized by significantly elevated leucocyte (mainly neutrophil and monocytes) and erythrocyte counts-and with markers of systemic inflammation including high-sensitivity C-reactive protein, ferritin, fibrinogen, P-selectin, and vascular cell adhesion molecule-1. The associations between BM activation and MetS (and its components) and increased erythropoiesis were maintained in the subgroup of participants with no systemic inflammation. Bone marrow activation was significantly associated with high arterial metabolic activity (18F-FDG uptake). The co-occurrence of BM activation and arterial 18F-FDG uptake was associated with more advanced atherosclerosis (i.e. plaque presence and burden). In apparently healthy individuals, BM 18F-FDG uptake is associated with MetS and its components, even in the absence of systemic inflammation, and with elevated counts of circulating leucocytes. Bone marrow activation is associated with early atherosclerosis, characterized by high arterial metabolic activity. Bone marrow activation appears to be an early phenomenon in atherosclerosis development.[Progression of Early Subclinical Atherosclerosis (PESA); NCT01410318].The PESA study is funded by the CNIC and Santander Bank. The present study was partially funded by an intramural grant CNIC-Severo Ochoa to D.S. and B.I. B.I. is supported by the European Commission (H2020-HEALTH 945118 and ERC-CoG 819775). The CNIC is supported by the ISCIII, the Ministry of Science and Innovation, and the Pro CNIC Foundation. CNIC is a Severo Ochoa Center of Excellence (CEX2020-001041-S).S

    Notas Breves

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M&gt;70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0&lt;e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Design and Fabrication of an Optimized Cylindrical Electromagnetic Pulsed Actuator

    No full text

    Relationship between shallow seismicity and fluid exploitation in the Northern Burgos Basin (Nuevo León, México)

    No full text
    This paper examines the relationships between recent shallow seismicity and exploitation of fluids in the northern Burgos Basin where cumulative seismic events recorded in the State of Nuevo Leon reach a total of 304 earthquakes between 2006 and 2016. In detail, 2 to 5 yearly events occurred from 2006 to 2011; but a later remarkable increase was evident as follows: 89 in 2012, 69 in 2013, 75 in 2014, 31 in 2015 and 27 in 2016. This behavior doesn?t match the random fluctuations from natural seismicity rates. A statistical analysis allowed us to determine that the sequence of earthquakes after 2011 could be related to the activity of exploratory wells in the Burgos Basin, which were drilled down to the Pimienta (Upper Jurassic) and Agua Nueva (Upper Cretaceous) shale gas plays. The epicenters located in the State of Nuevo Leon, in the municipalities of China, General Terán, Montemorelos and Los Ramones, were associated with the Upper Jurassic Pimienta and Upper Cretaceous Agua Nueva shale gas fields. Only 17 earthquakes had magnitudes ranging from 4.0 - 4.5 Richter magnitude and those were associated with the exploratory wells Anhelido-1, Arbolero-1, Batial-1, Durian-1, Kernel-1, Mosquete-1, Neritas-1, Nuncio-1, Serbal-1 and Tangram-1. The hypocenters correspond to the depth at which the Pimienta and Agua Nueva Formations lie; hence, sharp changes in the minor shock frequencies were considered as indicators of induced seismicity related to hydraulic fracturing for fluid extraction. The scatterplot of the frequency and magnitude of events for 2009-2014 shows slopes between -7.0963 to -1.1538 that were considerably more negative than the natural seismicity values which span from 0.75 to 0.9. The slopes for 2012, 2013 and 2014 are negatives (-7.0963, -0.3656 and -0.1333), respectively. These dramatic changes in increasing of the minor shock sequences in the Burgos Basin allow us to be considered as indicators of induced seismicity due to fluid exploitation. This interpretation is based on the frequency and magnitude of shocks which achieve values of hydraulic fracturing-induced earthquakes associated with anthropogenic fracking, similar to other seismicity data obtained in different parts of the world where this technique is applied.Fil: Martinez Rodriguez, Juan Manuel. Universidad Autónoma de Nuevo León; MéxicoFil: Rossello, Eduardo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: López, Arquímedes Cruz. Universidad Autónoma de Nuevo León; MéxicoFil: Arriaga Díaz de León, Lilia E.. Universidad Autónoma de Nuevo León; MéxicoFil: Bermúdez Cerda, Javier Eugenio. Universidad Autónoma de Nuevo León; Méxic

    Subclinical atherosclerosis and accelerated epigenetic age mediated by inflammation: a multi-omics study.

    Get PDF
    AIMS Epigenetic age is emerging as a personalized and accurate predictor of biological age. The aim of this article is to assess the association of subclinical atherosclerosis with accelerated epigenetic age and to investigate the underlying mechanisms mediating this association. METHODS AND RESULTS Whole blood methylomics, transcriptomics, and plasma proteomics were obtained for 391 participants of the Progression of Early Subclinical Atherosclerosis study. Epigenetic age was calculated from methylomics data for each participant. Its divergence from chronological age is termed epigenetic age acceleration. Subclinical atherosclerosis burden was estimated by multi-territory 2D/3D vascular ultrasound and by coronary artery calcification. In healthy individuals, the presence, extension, and progression of subclinical atherosclerosis were associated with a significant acceleration of the Grim epigenetic age, a predictor of health and lifespan, regardless of traditional cardiovascular risk factors. Individuals with an accelerated Grim epigenetic age were characterized by an increased systemic inflammation and associated with a score of low-grade, chronic inflammation. Mediation analysis using transcriptomics and proteomics data revealed key pro-inflammatory pathways (IL6, Inflammasome, and IL10) and genes (IL1B, OSM, TLR5, and CD14) mediating the association between subclinical atherosclerosis and epigenetic age acceleration. CONCLUSION The presence, extension, and progression of subclinical atherosclerosis in middle-aged asymptomatic individuals are associated with an acceleration in the Grim epigenetic age. Mediation analysis using transcriptomics and proteomics data suggests a key role of systemic inflammation in this association, reinforcing the relevance of interventions on inflammation to prevent cardiovascular disease.The PESA study is co-funded by the Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain, and Banco Santander, Madrid, Spain. The study also receives funding from the Instituto de Salud Carlos III (PI15/02019, PI17/00590, and PI20/00819) and the European Regional Development Fund (ERDF) ‘Una manera de hacer Europa’. The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (grant CEX2020-001041-S funded by MCIN/AEI/10.13039/501100011033).S

    Single-pulse phase-contrast imaging at free-electron lasers in the hard X-ray regime

    No full text
    X-ray free-electron lasers (XFELs) have opened up unprecedented opportunities for time-resolved nano-scale imaging with X-rays. Near-field propagation-based imaging, and in particular near-field holography (NFH) in its high-resolution implementation in cone-beam geometry, can offer full-field views of a specimen's dynamics captured by single XFEL pulses. To exploit this capability, for example in optical-pump/X-ray-probe imaging schemes, the stochastic nature of the self-amplified spontaneous emission pulses, i.e. the dynamics of the beam itself, presents a major challenge. In this work, a concept is presented to address the fluctuating illumination wavefronts by sampling the configuration space of SASE pulses before an actual recording, followed by a principal component analysis. This scheme is implemented at the MID (Materials Imaging and Dynamics) instrument of the European XFEL and time-resolved NFH is performed using aberration-corrected nano-focusing compound refractive lenses. Specifically, the dynamics of a micro-fluidic water-jet, which is commonly used as sample delivery system at XFELs, is imaged. The jet exhibits rich dynamics of droplet formation in the break-up regime. Moreover, pump–probe imaging is demonstrated using an infrared pulsed laser to induce cavitation and explosion of the jet
    corecore