35 research outputs found

    Clathrin Heavy Chain Knockdown Impacts CXCR4 Signaling and Post-translational Modification

    Get PDF
    Recent research has implicated endocytic pathways as important regulators of receptor signaling. However, the role of endocytosis in regulating chemokine CXC receptor 4 (CXCR4) signaling remains largely unknown. In the present work we systematically investigate the impact of clathrin knockdown on CXCR4 internalization, signaling, and receptor post-translational modification. Inhibition of clathrin-mediated endocytosis (CME) significantly reduced CXCR4 internalization. In contrast to other receptors, clathrin knockdown increased CXCL12-dependent ERK1/2 signaling. Simultaneous inhibition of CME and lipid raft disruption abrogated this increase in ERK1/2 phosphorylation suggesting that endocytic pathway compensation can influence signaling outcomes. Interestingly, using an antibody sensitive to CXCR4 post-translational modification, we also found that our ability to detect CXCR4 was drastically reduced upon clathrin knockdown. We hypothesize that this effect was due to differences in receptor post-translational modification as total CXCR4 protein and mRNA levels were unchanged. Lastly, we show that clathrin knockdown reduced CXCL12-dependent cell migration irrespective of an observed increase in ERK1/2 phosphorylation. Altogether, this work supports a complex model by which modulation of endocytosis affects not only receptor signaling and internalization but also receptor post-translational modification

    Vapd In Xylella Fastidiosa Is A Thermostable Protein With Ribonuclease Activity.

    Get PDF
    Xylella fastidiosa strain 9a5c is a gram-negative phytopathogen that is the causal agent of citrus variegated chlorosis (CVC), a disease that is responsible for economic losses in Brazilian agriculture. The most well-known mechanism of pathogenicity for this bacterial pathogen is xylem vessel occlusion, which results from bacterial movement and the formation of biofilms. The molecular mechanisms underlying the virulence caused by biofilm formation are unknown. Here, we provide evidence showing that virulence-associated protein D in X. fastidiosa (Xf-VapD) is a thermostable protein with ribonuclease activity. Moreover, protein expression analyses in two X. fastidiosa strains, including virulent (Xf9a5c) and nonpathogenic (XfJ1a12) strains, showed that Xf-VapD was expressed during all phases of development in both strains and that increased expression was observed in Xf9a5c during biofilm growth. This study is an important step toward characterizing and improving our understanding of the biological significance of Xf-VapD and its potential functions in the CVC pathosystem.10e014576

    Periostin Responds to Mechanical Stress and Tension by Activating the MTOR Signaling Pathway

    Get PDF
    Current knowledge about Periostin biology has expanded from its recognized functions in embryogenesis and bone metabolism to its roles in tissue repair and remodeling and its clinical implications in cancer. Emerging evidence suggests that Periostin plays a critical role in the mechanism of wound healing; however, the paracrine effect of Periostin in epithelial cell biology is still poorly understood. We found that epithelial cells are capable of producing endogenous Periostin that, unlike mesenchymal cell, cannot be secreted. Epithelial cells responded to Periostin paracrine stimuli by enhancing cellular migration and proliferation and by activating the mTOR signaling pathway. Interestingly, biomechanical stimulation of epithelial cells, which simulates tension forces that occur during initial steps of tissue healing, induced Periostin production and mTOR activation. The molecular association of Periostin and mTOR signaling was further dissected by administering rapamycin, a selective pharmacological inhibitor of mTOR, and by disruption of Raptor and Rictor scaffold proteins implicated in the regulation of mTORC1 and mTORC2 complex assembly. Both strategies resulted in ablation of Periostin-induced mitogenic and migratory activity. These results indicate that Periostin-induced epithelial migration and proliferation requires mTOR signaling. Collectively, our findings identify Periostin as a mechanical stress responsive molecule that is primarily secreted by fibroblasts during wound healing and expressed endogenously in epithelial cells resulting in the control of cellular physiology through a mechanism mediated by the mTOR signaling cascade.This work was funded by the National Institutes of Health (NIH/NCI) P50-CA97248 (University of Michigan Head and Neck SPORE)

    Structural characterization of the H-NS protein from Xylella fastidiosa and its interaction with DNA

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The nucleoid-associated protein H-NS is a major component of the bacterial nucleoid involved in DNA compaction and transcription regulation. The NMR solution structure of the Xylella fastidiosa H-NS C-terminal domain (residues 56-134) is presented here and consists of two beta-strands and two alpha helices, with one loop connecting the two beta-strands and a second loop connecting the second beta strand and the first helix. The amide H-1 and N-15 chemical shift signals for a sample of XfH-NS56-134 were monitored in the course of a titration series with a 14-bp DNA duplex. Most of the residues involved in contacts to DNA are located around the first and second loops and in the first helix at a positively charged side of the protein surface. The overall structure of the Xylella H-NS C-terminal domain differ significantly from Escherichia coil and Salmonella enterica H-NS proteins, even though the DNA binding motif in loop 2 adopt similar conformation, as well as beta-strand 2 and loop 1. Interestingly, we have also found that the DNA binding site is expanded to include helix 1, which is not seen in the other structures. (C) 2012 Elsevier Inc. All rights reserved.52612228Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [07/50573-6, 07/55128-0, 02/02772-6

    PTEN Mediates Activation of Core Clock Protein BMAL1 and Accumulation of Epidermal Stem Cells

    No full text
    Tissue integrity requires constant maintenance of a quiescent, yet responsive, population of stem cells. In the skin, hair follicle stem cells (HFSCs) that reside within the bulge maintain tissue homeostasis in response to activating cues that occur with each new hair cycle or upon injury. We found that PTEN, a major regulator of the PI3K-AKT pathway, controlled HFSC number and size in the bulge and maintained genomically stable pluripotent cells. This regulatory function is central for HFSC quiescence, where PTEN-deficiency phenotype is in part regulated by BMAL1. Furthermore, PTEN ablation led to downregulation of BMI-1, a critical regulator of adult stem cell self-renewal, and elevated senescence, suggesting the presence of a protective system that prevents transformation. We found that short- and long-term PTEN depletion followed by activated BMAL1, a core clock protein, contributed to accumulation of HFSC

    Functional and small-angle X-ray scattering studies of a new stationary phase survival protein E (SurE) from Xylella fastidiosa - evidence of allosteric behaviour

    No full text
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)The genome data of bacterium Xylella fastidiosa strain 9a5c has identified several orfs related to its phytopathogenic adaptation and survival. Among these genes, the surE codifies a survival protein E (XfSurE) whose function is not so well understood, but functional assays in Escherichia coli revealed nucleotidase and exopolyphosphate activity. In the present study, we report the XfSurE protein overexpression in E. coli and its purification. The overall secondary structure was analyzed by CD. Small-angle X-ray scattering and gel. filtration techniques demonstrated that the oligomeric state of the protein in solution is a tetramer. In addition, functional kinetics experiments were carried out with several monophosphate nucleoside substrates and revealed a highly positive cooperativity. An allosteric mechanism involving torsion movements in solution is proposed to explain the cooperative behaviour of XfSurE. This is the. first characterization of a SurE enzyme from a phytopathogen organism and, to our knowledge, the. first solution structure of a SurE protein to be described.2762267516762Fundacao de Amparo a Pesquisa do Estado de Sao, Paulo [01/07533-7, 05/03234-6]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundacao de Amparo a Pesquisa do Estado de Sao, Paulo [01/07533-7, 05/03234-6

    Initial crystallographic studies of a small heat-shock protein from Xylella fastidiosa

    No full text
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)The ORF XF2234 in the Xylella fastidiosa genome was identified as encoding a small heat-shock protein of 17.9 kDa (HSP17.9). HSP17.9 was found as one of the proteins that are induced during X. fastidiosa proliferation and infection in citrus culture. Recombinant HSP17.9 was crystallized and surface atomic force microscopy experiments were conducted with the aim of better characterizing the HSP17.9 crystals. X-ray diffraction data were collected at 2.7 angstrom resolution. The crystal belonged to space group P4(3)22, with unit-cell parameters a = 68.90, b = 68.90, c = 72.51 angstrom, and is the first small heat-shock protein to crystallize in this space group.685535539Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    Periostin-driven cellular migration requires mTOR signaling.

    No full text
    <p>(<b>A</b>) Representative pictures of the NOK-SI cell scratch assay following treatment with vehicle, recombinant Periostin (50 ng/ml), and rapamycin (50 nM). Scale bars represent 50 μm. (<b>B</b>) Quantitative analysis of open-wounded area over time (n=4; mean ± S.E.M.). Note that rapamycin abrogates the Periostin migratory activity of epithelial cells (***p<0.001). (<b>C</b>) Proliferation assay using keratinocytes treated with rapamycin and/or Periostin. Note that Periostin alone induced significant cellular proliferation at 50 ng/ml (*p<0.05). Treatment with rapamycin blocked periostin-induced cell proliferation (ns p>0.05). (<b>D</b>) Representative immunoblot depicting knockdown of Raptor and Rictor after siRNA treatment. Scramble siRNA oligonucleotides sequences were used as controls. GAPDH was used as loading controls. (<b>E</b>) Graphic shows the quantitative analyses of open-wounded areas using NOK-SI cells over time (n=4; mean ± S.E.M.). Note that siRNA targeting Raptor abrogates Periostin-induced cellular migratory resulting on complete wound closure by 48 hours (**p<0.05). siRNA targeting Rictor did not change the Periostin induced accelerated cellular migration resulting on wound closure by 24 hours (ns p>0.05). (<b>F</b>) Proliferation assay using NOK-SI cells treated with siRNA for Raptor, Rictor, or siRNA scramble, and/or Periostin. Note that Periostin induced significant cellular proliferation (*p<0.05). Treatment with siRNA for Raptor or Rictor resulted in disruption of Periostin induced cellular proliferation (***p<0.001).</p
    corecore