18 research outputs found

    Polarization Control in Integrated Graphene-Silicon Quantum Photonics Waveguides

    Get PDF
    We numerically investigated the use of graphene nanoribbons placed on top of silicon-on-insulator (SOI) strip waveguides for light polarization control in silicon photonic-integrated waveguides. We found that two factors mainly affected the polarization control: the graphene chemical potential and the geometrical parameters of the waveguide, such as the waveguide and nanoribbon widths and distance. We show that the graphene chemical potential influences both TE and TM polarizations almost in the same way, while the waveguide width tapering enables both TE-pass and TM-pass polarizing functionalities. Overall, by increasing the oxide spacer thickness between the silicon waveguide and the top graphene layer, the device insertion losses can be reduced, while preserving a high polarization extinction ratio

    Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors

    Full text link
    We report on the first measurement of 39Ar in argon from underground natural gas reservoirs. The gas stored in the US National Helium Reserve was found to contain a low level of 39Ar. The ratio of 39Ar to stable argon was found to be <=4x10-17 (84% C.L.), less than 5% the value in atmospheric argon (39Ar/Ar=8x10-16). The total quantity of argon currently stored in the National Helium Reserve is estimated at 1000 tons. 39Ar represents one of the most important backgrounds in argon detectors for WIMP dark matter searches. The findings reported demonstrate the possibility of constructing large multi-ton argon detectors with low radioactivity suitable for WIMP dark matter searches.Comment: 6 pages, 2 figures, 2 table

    Polarization Control in Integrated Silicon Waveguides Using Semiconductor Nanowires

    No full text
    In this work, we show the design of a silicon photonic-based polarization converting device based on the integration of semiconduction InP nanowires on the silicon photonic platform. We present a comprehensive numerical analysis showing that full polarization conversion (from quasi-TE modes to quasi-TM modes, and vice versa) can be achieved in devices exhibiting small footprints (total device lengths below 20 µm) with minimal power loss (&lt;2 dB). The approach described in this work can pave the way to the realization of complex and re-configurable photonic processors based on the manipulation of the state of polarization of guided light beams

    Polarization control in integrated silicon waveguides using semiconductor nanowires

    Get PDF
    In this work, we show the design of a silicon photonic-based polarization converting device based on the integration of semiconduction InP nanowires on the silicon photonic platform. We present a comprehensive numerical analysis showing that full polarization conversion (from quasi-TE modes to quasi-TM modes, and vice versa) can be achieved in devices exhibiting small footprints (total device lengths below 20 µm) with minimal power loss (&lt;2 dB). The approach described in this work can pave the way to the realization of complex and re-configurable photonic processors based on the manipulation of the state of polarization of guided light beams

    Polarization Control in Integrated Graphene-Silicon Quantum Photonics Waveguides

    Get PDF
    We numerically investigated the use of graphene nanoribbons placed on top of silicon-on-insulator (SOI) strip waveguides for light polarization control in silicon photonic-integrated waveguides. We found that two factors mainly affected the polarization control: the graphene chemical potential and the geometrical parameters of the waveguide, such as the waveguide and nanoribbon widths and distance. We show that the graphene chemical potential influences both TE and TM polarizations almost in the same way, while the waveguide width tapering enables both TE-pass and TM-pass polarizing functionalities. Overall, by increasing the oxide spacer thickness between the silicon waveguide and the top graphene layer, the device insertion losses can be reduced, while preserving a high polarization extinction ratio

    Integrated Photonic Passive Building Blocks on Silicon-on-Insulator Platform

    No full text
    Integrated photonics on Silicon-On-Insulator (SOI) substrates is a well developed research field that has already significantly impacted various fields, such as quantum computing, micro sensing devices, biosensing, and high-rate communications. Although quite complex circuits can be made with such technology, everything is based on a few ’building blocks’ which are then combined to form more complex circuits. This review article provides a detailed examination of the state of the art of integrated photonic building blocks focusing on passive elements, covering fundamental principles and design methodologies. Key components discussed include waveguides, fiber-to-chip couplers, edges and gratings, phase shifters, splitters and switches (including y-branch, MMI, and directional couplers), as well as subwavelength grating structures and ring resonators. Additionally, this review addresses challenges and future prospects in advancing integrated photonic circuits on SOI platforms, focusing on scalability, power efficiency, and fabrication issues. The objective of this review is to equip researchers and engineers in the field with a comprehensive understanding of the current landscape and future trajectories of integrated photonic components on SOI substrates with a 220 nm thick device layer of intrinsic silicon
    corecore