105 research outputs found

    The interaction of secretin with pancreatic membranes

    No full text
    1. 125I-labelled secretin bound rapidly and specifically to membranes from cat pancreas. Binding of labelled hormone was competitively inhibited by unlabelled secretin in the same range of concentrations that stimulated pancreatic adenylate cyclase in these membranes. The dissociation constant of the membrane binding sites for unlabelled secretin as evaluated by these displacement experiments was 4.1-10-9 M and the number of binding sites 1.0 pmol per mg of membrane protein. 2. Studies using different concentrations of [125I]secretin (at a constant ratio of labelled to unlabelled hormone) revealed a similar value of 4-4-10-9 M for the dissociation constant. 3. Both the association and dissociation rate constants of [125I]secretin binding were temperature sensitive; the dissociation rate constant increased more rapidly with increase in temperature. The ratio k-1/k+1 (at 22 degrees C) gave a dissociation constant of 3.7-10-9M which agrees closely with the figure obtained from equilibrium data. These data indicate that 125I-labelled secretin and unlabelled secretin bind to the same binding site on pancreatic membranes, with high affinity. 4. Unlabelled secretin stimulated pancreatic adenylate cyclase with an apparent Km of 8.4-10-9 M, while [125I]secretin apparently did not stimulate the adenylate cyclase. Together with the binding data this might suggest that different portions of the secretin molecule are responsible for binding and adenylate cyclase activation. 5. Studies on the specificity of [125I]secretin binding carried out with various peptide hormones (glucagon, human gastrin, pancreozymin and caerulein) which are all inefficient in stimulating pancreatic fluid secretin, showed that these hormones have no influence on the binding of [125I]secretin. In contrast, vasoactive intestinal polypeptide, which stimulates pancreatic fluid and bicarbonate secretion, showed a competitive inhibition of secretin binding to the plasma membrane preparation

    Performance Evaluation of the Quantamatrix QMAC-dRAST System for Rapid Antibiotic Susceptibility Testing Directly from Blood Cultures.

    No full text
    Rapid antibiotic susceptibility testing (AST) for positive blood cultures can improve patient clinical outcomes if the time to an effective antimicrobial therapy is shortened. In this study, we tested the Quantamatrix dRAST system (QMAC-dRAST), a rapid AST system based on time-lapse microscopic imagery of bacterial colony formation in agarose. Evaluation of the QMAC-dRAST was performed from 250 monobacterial blood cultures including 130 Enterobacterales, 20 non-fermentative Gram-negative bacteria, 69 staphylococci and 31 enterococci. Blood cultures were recovered from anonymous patients or from spiking experiments to enrich our study with bacterial species and resistant strains. Categorical agreement (CA), minor errors (me), major errors (ME) and very major errors (VME) were calculated in comparison to the results obtained from the BD Phoenix™ M50. Discrepancies between the Phoenix™ M50 and QMAC-dRAST results were investigated using the gradient strip method. The repeatability and reproducibility performance of the QMAC-dRAST was assessed for 16 strains, each strain being tested five times from a spiked blood culture. The overall CAs for Enterobacterales, non-fermentative Gram-negative bacteria, staphylococci and enterococci were 95.1%, 91.2%, 93.4% and 94.5%, respectively. The VME percentage was below 4% for all the groups except for staphylococci, which showed a VME rate of 7%. The median time to result was 6.7 h (range: 4.7-7.9). Repeatability and reproducibility assays showed a high reliability of AST results with best and worst ratios of 98.8% and 99.6% and 95.0% and 98.3%, respectively. The QMAC-dRAST is a fast and reliable system to determine AST directly from monobacterial blood cultures with a major TAT reduction compared to conventional AST testing

    Development of sensitivity to cAMP-inducing hormones in the rat stomach

    No full text

    Elección de alimentos. Enfoque biológico

    No full text
    ¿Qué factores intervienen en la elección de los alimentos? Desde el punto de vista biológico (sabor, aroma, textura) se prefieren los sabores dulces y grasosos, y desde el químico, los que más estimulan el sistema nervioso. Sin embargo, las autoras afirman que es posible cambiar las sensaciones en el cerebro para comer saludablemente, a fin de disminuir el consumo de alimentos industrializados y adquirir mayor conciencia de los beneficios de una alimentación balanceada
    corecore