83 research outputs found

    Non-relativistic limits and 3D massive gravity

    Get PDF
    The non-relativistic version of General Relativity, called Newton-Cartan gravity, has received renewed attention as a tool to explore (non-perturbative) properties of non-relativistic quantum field theories. The first part of this talk is a non-specialist introduction to Newton-Cartan geometry; in particular, it is shown how Newton-Cartan gravity arises as a special limit of General Relativity. The second part reviews a novel non-relativistic limit of the 3D massive spin-2 Fierz-Pauli theory to a spin-2 planar Schrodinger equation that has been proposed to describe the so-called GMP gapped spin-2 mode of fractional Quantum Hall states. The talk concludes with speculations on an extension of this non-relativistic limit to interacting massive 3D gravity theories.</p

    Axion-Dilaton Domain Walls and Fake Supergravity

    Full text link
    Dynamical systems methods are used to investigate domain-wall solutions of a two-parameter family of models in which gravity is coupled to an axion, and to a dilaton with an exponential potential of either sign. A complete global analysis is presented for (i) constant axion and (ii) flat walls, including a study of bifurcations and a new exact domain-wall solution with non-constant axion. We reconsider `fake supergravity' issues in light of these results. We show, by example, how domain walls determine multi-valued superpotentials that branch at stationary points that are not stationary points of the potential, and we apply this result to potentials with anti-de Sitter vacua. We also show by example that `adapted' truncation to a single-scalar model is sometimes inconsistent, and we propose a `generalized' fake supergravity formalism that applies in some such cases.Comment: 43pp, 19 figures; minor corrections and extensions; one additional figur

    On Maximal Massive 3D Supergravity

    Get PDF
    We construct, at the linearized level, the three-dimensional (3D) N = 4 supersymmetric "general massive supergravity" and the maximally supersymmetric N = 8 "new massive supergravity". We also construct the maximally supersymmetric linearized N = 7 topologically massive supergravity, although we expect N = 6 to be maximal at the non-linear level.Comment: 33 page

    On Critical Massive (Super)Gravity in adS3

    Get PDF
    We review the status of three-dimensional "general massive gravity" (GMG) in its linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter space that yield generalizations of "chiral gravity". We then show how these results extend to N=1 super-GMG, expanded about a supersymmetric adS vacuum, and also to the most general `curvature-squared' N=1 supergravity model.Comment: 10 pages, Proceedings of ERE 2010, Granada, 6-10 september 2010; reference adde

    More on Massive 3D Supergravity

    Get PDF
    Completing earlier work on three dimensional (3D) N=1 supergravity with curvature-squared terms, we construct the general supergravity extension of cosmological massive gravity theories. We expand about supersymmetric anti-de Sitter vacua, finding the conditions for bulk unitarity and the critical points in parameter space at which the spectrum changes. We discuss implications for the dual conformal field theory.Comment: v1 : 53 pages, 1 figure; v2 : significantly shortened, 42 p., version published in Class. Quant. Gra

    The value of routine chest radiographs after minimally invasive cardiac surgery: an observational cohort study

    Get PDF
    BACKGROUND: Chest radiographs (CXRs) are obtained frequently in postoperative cardiac surgery patients. The diagnostic and therapeutic efficacy of routine CXRs is known to be low and the discussion regarding the safety of abandoning these CXRs after cardiac surgery is still ongoing. We investigated the value of routine CXRs directly after minimally invasive cardiac surgery. METHODS: We prospectively included all patients who underwent minimally invasive cardiac surgery by port access, ministernotomy or bilateral video-assisted thoracoscopy (VATS) in the year 2012. A direct postoperative CXR was performed on all patients at ICU arrival. All CXR findings were noted, including whether they led to an intervention or not. The results were compared to the postoperative CXR results in patients who underwent conventional cardiac surgery by full median sternotomy over the same period. MAIN RESULTS: A total of 249 consecutive patients were included. Most of these patients underwent valve surgery, rhythm surgery or a combination of both. The diagnostic efficacy for minor findings was highest in the port access and bilateral VATS groups (56% and 63% versus 28% and 45%) (p < 0.005). The diagnostic efficacy for major findings was also higher in these groups (8.9% and 11% versus 4.3% and 3.8%) (p = 0.010). The need for an intervention was most common after minimally invasive surgery by port access, although this difference was not statistically significant (p = 0.056). CONCLUSIONS: The diagnostic efficacy of routine CXRs performed after minimally invasive cardiac surgery by port access or bilateral VATS is higher than the efficacy of CXRs performed after conventional cardiac surgery. A routine CXR after these procedures should still be considered

    On "New Massive" 4D Gravity

    Get PDF
    We construct a four-dimensional (4D) gauge theory that propagates, unitarily, the five polarization modes of a massive spin-2 particle. These modes are described by a "dual" graviton gauge potential and the Lagrangian is 4th-order in derivatives. As the construction mimics that of 3D "new massive gravity", we call this 4D model (linearized) "new massive dual gravity". We analyse its massless limit, and discuss similarities to the Eddington-Schroedinger model.Comment: 17 pages, v2 : version published in JHE

    A spin-4 analog of 3D massive gravity

    Get PDF
    A 6th-order, but ghost-free, gauge-invariant action is found for a 4th-rank symmetric tensor potential in a three-dimensional (3D) Minkowski spacetime. It propagates two massive modes of spin 4 that are interchanged by parity, and is thus a spin-4 analog of linearized "new massive gravity". Also found are ghost-free spin-4 analogs of linearized "topologically massive gravity" and "new topologically massive gravity", of 5th- and 8th-order respectively.Comment: 16 pages, v2 : version published in Class. Quant. Gra

    Validation of Prosthetic Mitral Regurgitation Quantification Using Novel Angiographic Platform by Mock Circulation.

    Get PDF
    This study aimed to validate a dedicated software for quantitative videodensitometric angiographic assessment of mitral regurgitation (QMR).Quantitative videodensitometric aortography of aortic regurgitation using the time-density principle is a well-documented technique, but the angiographic assessment of mitral regurgitation (MR) remains at best semi-quantitative and operator dependent.Fourteen sheep underwent surgical mitral valve replacement using 2 different prostheses. Pre-sacrifice left ventriculograms were used to assess MR fraction (MRF) using QMR and MR volume (MRV). In an independent core lab, the CAAS QMR 0.1 was used for QMR analysis. In vitro MRF and MRV were assessed in a mock circulation at a comparable cardiac output to the in vivo one by thermodilution. The correlations and agreements of in vitro and in vivo MRF, MRV, and interobserver reproducibility for QMR analysis were assessed using the averaged cardiac cycles (CCs).In vivo derived MRF by QMR strongly correlated with in vitro derived MRF, regardless of the number of the CCs analyzed (best correlation: 3 CCs y = 0.446 + 0.994x; R = 0.784; p =0.002). The mean absolute difference between in vitro derived MRF and in vivo derived MRF from 3 CCs was 0.01 ± 4.2% on Bland-Altman analysis. In vitro MRV and in vivo MRV from 3 CCs were very strongly correlated (y = 0.196 + 1.255x; R = 0.839; p 0.001). The mean absolute difference between in vitro MRV and in vivo MRV from 3 CCs was -1.4 ± 1.9 ml. There were very strong correlations of in vivo MRF between 2 independent analysts, regardless of the number of the CCs.In vivo MRF using the novel software is feasible, accurate, and highly reproducible. These promising results have led us to initiate the first human feasibility study comprising patients undergoing percutaneous mitral valve edge-to-edge repair
    corecore