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Abstract.
We review the status of three-dimensional “general massive gravity” (GMG) in its

linearization about an anti-de Sitter (adS) vacuum, focusing on critical points in parameter
space that yield generalizations of “chiral gravity”. We then show how these results extend
to N = 1 super-GMG, expanded about a supersymmetric adS vacuum, and also to the most
general ‘curvature-squared’ N = 1 supergravity model.

Massive gravity models in three spacetime dimensions (3D) have been intensively investigated
over the past few years because of the possibility of finding a consistent ‘toy’ model of quantum
gravity from which we might learn something useful. The oldest and simplest of these massive
gravity models is “topologically massive gravity” (TMG), which is defined by the addition to the
usual Einstein-Hilbert (EH) action of a Lorentz Chern-Simons (LCS) term [1]. TMG propagates
a single massive spin-2 mode but this is a ghost unless the EH term has the non-standard sign.
It is useful to define a sign σ such that σ = 1 yields the standard EH term, so that “non-
standard” means σ = −1. The addition of a cosmological term allows the possibility of anti-de
Sitter (adS) vacua, but then σ = −1 implies a negative mass for (BTZ) black holes. In the
context of the adS3/CFT2 correspondence, this problem with the bulk theory translates to a
negative central charge of the boundary conformal field theory (CFT). Taking σ = 1 allows
positive central charges but at the cost of non-unitary propagation of the bulk spin-2 modes,
which again implies [2, 3], although less directly, non-unitarity of the boundary CFT.

The classical equations of TMG depend on a mass parameter µ associated to the LCS term,
and a length scale ` associated to the cosmological term, which we define such that ` is the
radius of curvature in an adS vacuum. However, rescaling the metric is equivalent to rescaling
µ and ` so the only parameter of the classical theory is the dimensionless product µ`. Quantum
corrections will introduce the additional dimensionless constant κ2/`, where κ =

√
16πG3 is the

gravitational coupling constant, but this appears classically only through an overall factor of
`/κ2 in the on-shell action. In the equivalent approximation to the boundary CFT, the central
charges take the form c± = (24π`/κ2)f±(µ`) for dimensionless functions f±. It was pointed
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out in [4] that the parameter µ` can be tuned to a critical value, the “chiral point”, at which
either c+ or c− is zero. The bulk massive graviton mode then disappears from the spectrum,
which suggests that the problem of a non-unitary bulk graviton for σ = 1 is circumvented by
this “chiral gravity” theory. The definition of such a theory depends crucially on a choice of
boundary conditions [5, 6]. Boundary conditions weaker than the standard Brown-Henneaux
boundary conditions lead to well-defined logarithmic boundary CFTs. They also allow new
logarithmic bulk modes, which is related to the observation of [7] that the bulk spin-2 mode is
replaced by a bulk spin-1 mode at the chiral point.

An alternative, parity-preserving 3D massive gravity is “new massive gravity” (NMG), which
is defined by the addition to the EH plus cosmological terms of a curvature-squared term
constructed from the scalar [8]

GµνSµν ≡ RµνRµν −
3

8
R2 (1)

where the tensors G,S,R are, respectively, the Einstein, Schouten and Ricci tensors. This
involves the introduction of a mass-squared parameter m2 (which is positive for NMG but which
we allow to be negative in the most general curvature-squared model). In an expansion about a
Minkowski vacuum one finds that two spin-2 modes of mass m are propagated and, as for TMG,
that perturbative unitarity requires σ = −1. As required by parity, the two spin-2 modes have
opposite sign “helicities” s; i.e. opposite sign of the 3D Pauli-Lubanski pseudo-scalar divided
by the mass; we call |s| the “spin”.

In the adS context, there is a family of classical NMG models parametrized by the
dimensionless constant m2`2. In any parity-preserving 3D gravity theory with an adS vacuum,
the central charges of the boundary CFT are equal, c+ = c− = c, and may be computed by the
formula [9–11]

c =
8π`

κ2
gµν

∂L3D

∂Rµν

∣∣∣∣
adS vacuum

(2)

where L3D is the 3D gravity Lagrangian of mass dimension two, i.e. without the factor of κ−2.
For NMG this gives [12–14]

c =
24π`

κ2
σ̂ , σ̂ = σ +

1

2`2m2
. (3)

The expansion of the NMG action about the adS vacuum is greatly facilitated by starting with an
alternative second-order version of the action with an auxiliary tensor field [8]. Diagonalization
of the quadratic term of this action yields the sum of a linearized EH action with coefficient σ̂,
which is therefore the ‘effective’ EH coefficient in the adS background, and a spin-2 Fierz-Pauli
(FP) action with coefficient −1/σ̂ [13]. The linearized EH action propagates no modes so we
get two massive gravitons from the FP action, but these are propagated unitarily only if σ̂ < 0.
Hence there is a clash between unitary bulk gravitons and positive CFT central charges, as in
TMG. There is also an analog of chiral gravity because there is a critical value of `2m2 at which
c = 0, and at which the quadratic action becomes equivalent to a spin-1 Proca action [13]. This
critical NMG model is associated to a logarithmic CFT [15].

Both TMG and NMG are special cases of “general massive gravity” (GMG) [8], defined by
the addition of both the LCS and the NMG curvature-squared term to the EH plus cosmological
terms. Expanded about a Minkowski vacuum, this model propagates two spin-2 modes of
opposite helicity but with different masses. In an adS vacuum there is a two-parameter family
of classical GMG models parametrized by the constants µ` and m2`2. The central charges of the
boundary CFT can be computed by a generalization of (2) to allow for parity-odd terms [16].
The result is

c± = (24π`/κ2)f± , f± = σ̂ ± 1

µ`
. (4)
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The no-ghost conditions follow from an expansion of the GMG action about an adS vacuum,
but this ‘off-shell’ analysis is more subtle here, in part because the auxiliary tensor field ‘trick’
reduces the order in derivatives to three rather than two when the LCS term is present. Recent
results in [17] indicate that the parameter ranges with positive central charge and positive energy
of the graviton modes are mutually exclusive in GMG, as in TMG and NMG. Here we shall
review, with some simplifications, the results of the on-shell analysis of [18] and explain how it
extends to supergravity.

To facilitate our task, it will be convenient to first review the connection between a unitary
irreducible representation (UIR) of the SO(2, 2) isometry group of adS3 and fields on adS3.
Let ϕ(s) be a rank-|s| (|s| ≥ 1) totally-symmetric and tracefree field on adS3 subject to the
‘divergence-free’ condition

D̄µϕ
(s)
µν1···νs−1 = 0 , (5)

where D̄ is the covariant derivative with respect to a background adS3 metric ḡ. Let D(η) be
the family of first-order linear differential operators, parametrized by a dimensionless constant
η, that act on the space of such tensors according to the definition[

D(η)ϕ(s)
]
µ1···µs

= [D(η)]µ1

ρϕ
(s)
ρµ2···µs , [D (η)]µ

ν = `−1δνµ +
η√
|ḡ|

εµ
τνD̄τ . (6)

Despite appearances, the rank-|s| tensor D(η)φ(s) is also traceless, totally symmetric and
‘divergence-free’. Using the identity

D(η)D(−η)ϕ(s) ≡ −η2
[
D̄2 + `−2

(
|s|+ 1− η−2

)]
ϕ(s) (7)

we see that eigenfunctions of the covariant D’Alembertian D̄2 acting on spin-|s| fields are linear
combinations of solutions to the first-order equations

D(η)ϕ(s) = 0 , D(−η)ϕ(s) = 0 . (8)

A physically acceptable1 solution of either equation furnishes a UIR of SO(2, 2) labelled by its
lowest weights (E0, s), where `

−1E0 is the lowest energy
2, which is real and satisfies the condition

E0 ≥ |s| [19–21]. The UIR furnished by a solution of (8) has lowest weights [22]

E0 = 1 +
1

|η|
, s =

|s|η
|η|

. (9)

We see that the sign of η gives the sign of the helicity s. The UIR’s with E0 = |s| for s 6= 0 are
called singleton irreps; their weight space is drastically reduced compared to a typical UIR, and
they can be interpreted as describing modes that are confined to the 2D boundary of adS3 [23].
More generally, the adS/CFT correspondence assigns to every UIR an operator in a dual 2D
CFT with conformal weights h± = (E0 ± s)/2, in which context the bound E0 ≥ |s| translates
into h± ≥ 0.

The above analysis applies for |s| > 0. For s = 0 we must consider the solutions of the
second-order equation (

D̄2 − M 2
)
ϕ = 0 (10)

for constant M . The solutions, if physically acceptable, furnish UIRs with s = 0 and

E0 = 1±
√
1 + `2M 2 . (11)

1 i.e. nonsingular at the origin and normalizable with respect to the SO(2, 2) invariant measure [19,20].
2 Or highest energy. It is not possible to distinguish between the two at the level of the equations of motion.
This is why the unitarity of the irreducible representation is not sufficient for unitarity of the field theory.
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Reality of E0 implies the Breitenlohner-Freedman (BF) bound `2M 2 ≥ −1. In addition, E0 ≥ 0
is required for a UIR. This condition allows both signs in (11) when −1 ≤ `2M 2 ≤ 0; otherwise
only the plus sign is allowed.

Let us now see how all this applies to the ‘Einstein’ theory defined by the EH and cosmological
terms alone. We write the metric as

gµν = ḡµν

(
1 +

1

3
h

)
+Hµν , ḡµνHµν = 0 , (12)

so that (H,h) are the tracefree and trace perturbations respectively. In the gauge

D̄µHµν = 0 , (13)

the linearized field equations may now be written as

[D(1)D(−1)H]µν = −1

3

(
D̄µD̄ν −

1

3
ḡµνD̄

2

)
h ,

(
`2D̄2 − 3

)
h = 0 . (14)

We have coupled equations for H and h but there is still a residual gauge invariance. If we write
the vector gauge parameter of linearized diffeomorphisms as ξTµ + ∂µξ, where D̄µξTµ = 0, then
the gauge condition (13) is invariant provided that

D̄µ

(
`2D̄2 − 3

)
ξ = 0 ,

(
`2D̄2 − 2

)
ξTµ = 0 ⇒

(
`2D̄2 + 2

)
D̄(µξ

T
ν) = 0 . (15)

The variation of h is δh ∼ D̄2ξ but this implies δh ∼ ξ for D̄2ξ ∼ ξ. Since ξ is a residual gauge
parameter, we may use it to set h to zero. This leaves us with the equation D(1)D(−1)H = 0,
but the identity (7) implies that this is equivalent to(

`2D̄2 + 2
)
H = 0 . (16)

This is clearly invariant under the residual gauge invariance, which suffices to remove all local
degrees of freedom of H.

We are now in a position to discuss GMG. Linearized about an adS vacuum, the GMG
equations are

[D(1)D(−1)D(η+)D(η−)H]µν = − 1

3`2

(
D̄µD̄ν −

1

3
ḡµνD̄

2

)
h , (17)

Ω

m2

(
`2D̄2 − 3

)
h = 0 , (18)

where
Ω ≡ `2m2σ̂ − 1 (19)

and [18]

η± = Ω−1

(
−`m2

2µ
±

√
`2m4

4µ2
− Ω

)
. (20)

We have retained the factor of Ω in the h-equation because it allows the Ω = 0 equations to be
obtained by taking the Ω → 0 limit. The region in parameter space with Ω > 0 is divided from
the region with Ω < 0 by the curve Ω = 0. To see the significance of this division, we observe
that

η+η− = Ω−1 . (21)
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This shows that the parameters η± have opposite signs in the Ω < 0 region and the same sign
in the Ω > 0 region. The reality of η± and the UIR condition |η±| ≤ 1 translate into m2c± ≤ 0
for Ω < 0 and m2c± ≥ 0, `2m4 ≥ 4µ2Ω for Ω > 0.

Provided that Ω 6= 0, we may proceed as in the ‘Einstein’ case, eliminating h by a combination
of its field equation and a residual gauge transformation, to arrive at the single 4th order equation

D(1)D(−1)D(η+)D(η−)H = 0 . (22)

As long as (η+ − η−) (|η+| − 1) (|η−| − 1) 6= 0 the general solution is a linear combination of the
two singleton modes and solutions of the first-order equations D(η±)H = 0. This state of affairs
applies in the NMG limit |µ| = ∞ since we then have

η+ = −η− = −1/
√
−Ω . (23)

Clearly, we must be on the Ω < 0 side of the parameter space divide to take this limit, in which
the bound |η±| ≤ 1 becomes m2σ̂ < 0. As confirmed by the computation of the quadratic action
in [13], this bound is the condition for the absence of tachyons. This computation also shows
that σ̂ < 0 is the no-ghost condition, i.e. for unitarity of the quantum field theory. As m2 > 0
for NMG, the absence of tachyons implies the absence of ghosts. It seems likely to us that this
will remain true for GMG as long as Ω < 0. However, it also seems likely that GMG has ghosts
when Ω > 0, even though it is certainly possible to satisfy the UIR bound |η±| < 1, and hence
avoid tachyons. This is because solutions of the equation D(η)D(η′)H = 0 with ηη′ > 0 could
be expected to arise naturally in the context of 5th order 3D gravity models, which necessarily
propagate ghosts in a Minkowski vacuum [24]. To settle this issue we would need an ‘off-shell’
analysis like that presented for NMG in [13].

When Ω = 0 the h-equation drops out. This leaves us with the H-equation, that can be
shown to reduce to

[D(η)D(1)D(−1)]µ
ρερ

αβD̄αHβν = 0 , η = − µ

`m2
. (24)

Unless |η| = 1, the solutions space is spanned by the singletons, the solution of D(η)H = 0, and
the solution of

ερ
αβD̄αHβν = 0 . (25)

By acting on this equation with the operator ελ
τµD̄τ , we see that the solution of (25) also obeys

(`2D̄2 + 3)H = 0. Comparing this with (7), we might naively conclude that it requires η = ∞
and hence E0 = 1, which violates the spin-2 bound E0 ≥ 2. The resolution of this puzzle is
subtle because of an additional gauge invariance; the relevant solutions of (25) are “partially
massless” [25,26].

Our main interest here is in the ‘critical’ GMG cases. For finite non-zero Ω these are those
for which

(η+ − η−) (|η+| − 1) (|η−| − 1) = 0 . (26)

When this condition holds, the solution space is no longer spanned by solutions of first-order
equations of the form D(η)H = 0. However, subject to appropriate boundary conditions, one
finds that additional solutions appear. In the case that two of the η values coincide, these are
logarithmic solutions of D2(η)H = 0 that do not solve D(η)H = 0. In the case that three η
values coincide we get additional doubly-logarithmic solutions of D3(η)H = 0 that solve neither
D(η)H = 0 nor D2(η)H = 0. A similar statement applies when Ω = 0 but then the only critical
case occurs when `m2 = |µ|, in which case we get a logarithmic solution of D2(±1)H = 0. The
catalog of critical points for Ω 6= 0 is much richer3:

3 The critical points of GMG have also been studied in [18]. Recently, properties of the logarithmic CFT dual to
GMG at the critical points have been investigated in [17].
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(i) |η+| = 1 but |η−| 6= 1 and Ω−1 6= 0. We find that η+ = ±1 when `µσ̂ = ∓1 and then
η− = ∓1/

(
1± `m2/µ

)
. We get no propagating graviton mode from D(η+)H = 0, just

an extra logarithmic solution to D2(±1)H = 0. In this case there is therefore a single
propagating massive graviton of helicity 2η−/|η−|. If Ω−1 → 0, then m2 → ∞, giving the
TMG limit. In this case η− = 0, and |`µσ| = 1.

(ii) |η−| = 1 but |η+| 6= 1 and Ω−1 6= 0. In this case η− = ±1 when `µσ̂ = ∓1 and then
η− = ∓1/

(
1± `m2/µ

)
. In this case there is a single propagating massive graviton of

helicity 2η+/|η+|. If Ω−1 → 0, then m2 → ∞, giving the TMG limit. In this case η+ = 0,
and |`µσ| = 1.

(iii) η+ = −η− and |η±| = 1. This case is realized by η− = −η+ = 1, which requires |µ| = ∞,
m2σ̂ = 0. This is the critical limit of NMG. In this case (22) degenerates to

D(1)2D(−1)2H = 0 . (27)

Although this propagates no gravitons, it does propagate two spin-1 modes [27]. One way
to see this is to rewrite the fourth-order equation as the pair of second-order equations(

`2D̄2 + 2
)
H = U ,

(
`2D̄2 + 2

)
U = 0 , (28)

where U is another symmetric traceless and ‘divergence-free’ tensor. Applying to the U -
equation the same reasoning that we used above for the ‘Einstein’ case, we deduce that
Uµν = 2D̄(µAν) for some vector field A satisfying

(
`2D̄2 − 2

)
Aµ = 0 and, since U is traceless,

D̄µAµ = 0. In other words H satisfies(
`2D̄2 + 2

)
Hµν = 2D̄(µAν) (29)

for a vector field such that (
`2D̄2 − 2

)
Aµ = 0 , D̄µAµ = 0 . (30)

These equations for A, which also follow from taking the divergence and trace of (29), are
Proca equations in the adS background. They are derivable from the Proca Lagrangian
density

LProca = −1
4FµνF

µν − 2`−2AµAµ , Fµν = 2∂[µAν] . (31)

For singleton solutions the left-hand-side of (29) vanishes, implying that A is a Killing
vector of the adS background. In contrast, the left-hand-side of (29) is non-vanishing for
the logarithmic solutions of (27) and hence these must be related to non-trivial Proca modes.
However, although a solution of the Proca equations furnishes a UIR of the adS3 isometry
group, with (E0, s) = (2, 1), a careful study of (29) shows that these solutions correspond to
the first descendants of the logarithmic modes; see [28] for a detailed description of precisely
such a descendant mode.

(iv) η+ = η− but |η±| 6= 1. This is possible only when Ω > 0. In this case, η± = −2µ/(m2`).
We get one propagating massive graviton from the solution to D(−2µ/(m2`)) = 0 and an
additional logarithmic solution of D2(−2µ/(m2`)) = 0.

(v) η+ = η− and |η±| = 1. This is possible only when Ω = 1, which requires 2µ = ∓m2`
according to whether η+ = η− = 1 or η+ = η− = −1. In this case we have, apart
from singletons, only logarithmic and doubly logarithmic modes from D3(1)H = 0 or
D3(−1)H = 0.
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Observe that only cases (i)-(iv) are possible for Ω < 0, which may be required if ghosts are
to be avoided, for the reason given above. In these four cases we have

c+c− = 0 . (32)

In other words, at least one of the two central charges of the boundary CFT is zero. Unless both
are zero, “critical” can be interpreted as “chiral”. As pointed out in [18], the “chiral GMG”
models interpolate between chiral TMG, which is case (iii), and critical NMG, which is case (iv).

In the remainder of this paper, we shall explain how these results extend to the supergravity
case. The N = 1 supersymmetric extensions of NMG and GMG have been found in recent
work, along with all possible maximally supersymmetric vacua [27,29]. These constructions are
complicated by the fact that the off-shell graviton multiplet contains not just the metric but also
an additional scalar field S, which is auxiliary in 3D ‘Einstein’ supergravity [30] and in super-
TMG [31] but which propagates in generic curvature-squared models. Even when the kinetic
term for S is absent it will still propagate a scalar mode in adS vacua unless the coefficients of
the cubic equation of motion for S are constants4, and this condition defines a “super-GMG”
model for which the bosonic action is precisely of GMG-form after elimination of S. Remarkably,
all adS vacua of GMG correspond to supersymmetric vacua of super-GMG, so the spectrum in
such vacua is determined by the GMG spectrum. Of course, the boundary CFT must now
be a boundary SCFT, but it will still have the same central charge [32]. For these reasons,
the results summarized above for GMG extend with no essential modifications to super-GMG.
Unfortunately, this makes it unlikely that supersymmetry can help to resolve the boundary/bulk
unitarity “clash” explained above.

Although the super-GMG model is the most interesting special case of the generic curvature
squared 3D supergravity model constructed in [27], the results for the generic model provide us
with the opportunity to explore some issues in the context of a model with more parameters.
The bosonic Lagrangian is

e−1Lbos = −V (S) + f(S)R+
1

m2

(
RµνRµν −

3

8
R2

)
+

1

8m̃2

[
R2 − 16 (∂S)2

]
+

1

µ
e−1LLCS ,

(33)

where LLCS is the Lorentz-Chern-Simons term, and

V (S) = −MS + 2σS2 − 1

µ̌
S3 +

(
− 3

2m2
+

1

m̌2
+

9

2m̃2

)
S4 ,

f(S) = σ +
1

2µ̌
S +

(
− 1

2m2
+

3

10m̌2
+

3

2m̃2

)
S2 .

(34)

The model has six independent mass parameters (M,m, m̌, m̃, µ̌, µ), which can be traded for
dimensionless parameters using the gravitational coupling constant, and one discrete parameter
σ = ±1, 0. Despite the notation, (m2, m̃2, m̌2) are allowed to take either sign.

The field equations following from (33) are given in [27]. The supersymmetric adS vacuum
solutions of these equations have5

S = S̄ = −`−1 , M = −`−1

(
4σ +

2

5`2m̌2

)
. (35)

4 This condition may be relaxed slightly but we refer to [27] for a discussion of this point.
5 We choose the sign of S so as to agree with the sign choice made in [27].
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The central charges are given by (4) with σ̂ given by

σ̂ = σ − 1

2`µ̌
+

3

10`2m̌2
. (36)

The adS/CFT correspondence suggests that the spectrum of propagating gravitons will be
independent of m̃ and will depend on the µ̌ and m̌ only through the parameter σ̂. We shall
verify this.

To expand the field equations about a supersymmetric adS vacuum, we write the metric as
in (12) and we write

S = S̄ + `−1s (37)

for dimensionless scalar perturbation s. To present the results, we shall again make use of the
parameters η± and Ω defined in (19) and (20) in terms of σ̂, although it should be remembered
that σ̂ is now given by (36). In addition, it is useful to define the dimensionless parameter

a = m2

[
− 2

m2
+

6

5m̌2
+

6

m̃2
− `

µ̌

]
. (38)

This agrees with the definition in [27] when restricted to the models (with m̃2 = ∞) for which this
parameter was defined there. We will also need the following (dimensionless) linear differential
operators:

L = `2D̄2 − 3 , L̃ =
m2

m̃2
L− Ω . (39)

Using these definitions, one finds that the h and s equations are, respectively,

1

m2
L
(
L̃h+ 3as

)
= 0 ,

1

m2

(
L̃+ 2a

)
s+

a

12m2
Lh = 0 , (40)

and that the linearized H-equation is

D(1)D(−1)D(η+)D(η−)H = Ω−1 J , (41)

where

Jµν =
1

3`2
(
D̄µD̄ν − 1

3 ḡµνD̄
2
) [

L̃h+ 3as
]
. (42)

The integrability condition D̄µJµν = 0 is satisfied as a consequence of the h-field equation.
Observe that we recover the GMG equations that we have already analyzed on setting

m̃2 = |µ̌| = ∞ and a = 0. In that case, we argued that it was possible to set h = 0, and
hence J = 0, by using a combination of the h-equation and a residual gauge transformation. It
is no longer so clear that this argument still applies, but a simpler one is available, as long as
Ω 6= 0. We define the new symmetric traceless and ‘divergence-free’ perturbation

H̃ = H −m2Ω−1J . (43)

Using the relation ε(µ
αβD̄|αJβ|ν) = 0, we may deduce that

D(1)D(−1)D(η+)D(η−)H̃µν = 0 . (44)

The analysis of critical points for Ω 6= 0 now proceeds exactly as for the GMG case. For Ω = 0
the H-equation is given by

[D(η)D(1)D(−1)]µ
ρερ

αβD̄αHβν = −ηJµν , η = − µ

`m2
. (45)
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Note that by acting on this equation with the operator ελ
τµD̄τ , we can arrive at the integrability

condition D(η)D(1)D(−1)(`2D̄2 + 3)H = 0, an equation that also follows from (24). To
summarize, the critical point structure of the generic curvature-squared supergravity model,
expanded about a supersymmetric adS vacuum, is identical to that of the GMG model, with all
dependence on the extra parameters absorbed into the effective EH coefficient σ̂, as anticipated
above.

The main difference of the generic case as compared to GMG is the possibility of additional
scalar modes arising from the h and s equations (40). Here we shall consider some special cases.

• m̃2 = ∞ and a = 0; this case was called “generalized GMG” in [27]; it reduces to the GMG
case analysed above when |µ̌| = ∞. For this case, and assuming non-zero finite m2, the
equations (40) become

ΩLh = 0 , (2a− Ω) s = 0 (46)

We see that s = 0 (unless Ω = 2a but then it is undetermined, implying an ‘accidental’
gauge invariance that allows one to choose s = 0). Provided Ω 6= 0 we have Lh = 0 and
residual gauge invariances allow us to set h = 0. There are therefore no propagating scalars.
One can show that the generalized super-NMG limit (|µ| = ∞) is ghost-free for σ̂ ≤ 0 [27].

• m̃2 = ∞ but a 6= 0. In this case the S-equation of motion is algebraic but it still propagates
modes in adS, for reasons explained in [27]. Here we verify this for the generic Ω 6= 0 case.
Under these conditions, the equations (40) become equivalent to (for m2 6= 0 and finite)

L
(
h− 3aΩ−1s

)
= 0 , Ls =

4Ω (Ω− 2a)

a2
s (47)

As the addition of a scalar to h does not change its residual gauge transformation, the first
equation does not lead to propagating modes. The second one takes the form (10) with
ϕ = s and M 2 = 3 + 4Ω (Ω− 2a) /a2. This equation therefore propagates a scalar mode
that is non-tachyonic. However there is no guarantee that it is not a ghost.

• a = 0 but m̃2 6= ∞. The equations (40) now reduce to

L

(
L− Ωm̃2

m2

)
h = 0 ,

(
L− Ωm̃2

m2

)
s = 0 . (48)

The first of these is a fourth-order equation for h that is not easy to analyse. The second
equation takes the form (10) with ϕ = s and `2M 2 = 3 + m̃2Ω/m2. We therefore get a
non-tachyonic scalar provided that 4 ≥ −m̃2Ω/m2, although there is again no guarantee
that it is not a ghost.
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