22 research outputs found

    Preparing the Perfect Cuttlefish Meal: Complex Prey Handling by Dolphins

    Get PDF
    Dolphins are well known for their complex social and foraging behaviours. Direct underwater observations of wild dolphin feeding behaviour however are rare. At mass spawning aggregations of giant cuttlefish (Sepia apama) in the Upper Spencer Gulf in South Australia, a wild female Indo-Pacific bottlenose dolphin (Tursiops aduncus) was observed and recorded repeatedly catching, killing and preparing cuttlefish for consumption using a specific and ordered sequence of behaviours. Cuttlefish were herded to a sand substrate, pinned to the seafloor, killed by downward thrust, raised mid-water and beaten by the dolphin with its snout until the ink was released and drained. The deceased cuttlefish was then returned to the seafloor, inverted and forced along the sand substrate in order to strip the thin dorsal layer of skin off the mantle, thus releasing the buoyant calcareous cuttlebone. This stepped behavioural sequence significantly improves prey quality through 1) removal of the ink (with constituent melanin and tyrosine), and 2) the calcareous cuttlebone. Observations of foraging dolphin pods from above-water at this site (including the surfacing of intact clean cuttlebones) suggest that some or all of this prey handling sequence may be used widely by dolphins in the region. Aspects of the unique mass spawning aggregations of giant cuttlefish in this region of South Australia may have contributed to the evolution of this behaviour through both high abundances of spawning and weakened post-spawning cuttlefish in a small area (>10,000 animals on several kilometres of narrow rocky reef), as well as potential long-term and regular visitation by dolphin pods to this site

    The Ecological Conditions That Favor Tool Use and Innovation in Wild Bottlenose Dolphins (Tursiops sp.)

    Get PDF
    Dolphins are well known for their exquisite echolocation abilities, which enable them to detect and discriminate prey species and even locate buried prey. While these skills are widely used during foraging, some dolphins use tools to locate and extract prey. In the only known case of tool use in free-ranging cetaceans, a subset of bottlenose dolphins (Tursiops sp.) in Shark Bay, Western Australia habitually employs marine basket sponge tools to locate and ferret prey from the seafloor. While it is clear that sponges protect dolphins' rostra while searching for prey, it is still not known why dolphins probe the substrate at all instead of merely echolocating for buried prey as documented at other sites. By ‘sponge foraging’ ourselves, we show that these dolphins target prey that both lack swimbladders and burrow in a rubble-littered substrate. Delphinid echolocation and vision are critical for hunting but less effective on such prey. Consequently, if dolphins are to access this burrowing, swimbladderless prey, they must probe the seafloor and in turn benefit from using protective sponges. We suggest that these tools have allowed sponge foraging dolphins to exploit an empty niche inaccessible to their non-tool-using counterparts. Our study identifies the underlying ecological basis of dolphin tool use and strengthens our understanding of the conditions that favor tool use and innovation in the wild

    Preliminary estimates of the abundance and fidelity of dolphins associating with a demersal trawl fishery

    No full text
    The incidental capture of wildlife in fishing gear presents a global conservation challenge. As a baseline to inform assessments of the impact of bycatch on bottlenose dolphins (Tursiops truncatus) interacting with an Australian trawl fishery, we conducted an aerial survey to estimate dolphin abundance across the fishery. Concurrently, we carried out boat-based dolphin photo-identification to assess short-term fidelity to foraging around trawlers, and used photographic and genetic data to infer longer-term fidelity to the fishery. We estimated abundance at approximate to 2,300 dolphins (95% CI = 1,247-4,214) over the ≈ 25,880-km2 fishery. Mark-recapture estimates yielded 226 (SE = 38.5) dolphins associating with one trawler and some individuals photographed up to seven times over 12 capture periods. Moreover, photographic and genetic re-sampling over three years confirmed that some individuals show longterm fidelity to trawler-associated foraging. Our study presents the first abundance estimate for any Australian pelagic dolphin community and documents individuals associating with trawlers over days, months and years. Without trend data or correction factors for dolphin availability, the impact of bycatch on this dolphin population's conservation status remains unknown. These results should be taken into account by management agencies assessing the impact of fisheries-related mortality on this protected species

    Luciferase reporter gene assay on human, murine and rat histamine H4 receptor orthologs: correlations and discrepancies between distal and proximal readouts

    Get PDF
    The investigation of the (patho)physiological role of the histamine H4 receptor (H4R) and its validation as a possible drug target in translational animal models are compromised by distinct species-dependent discrepancies regarding potencies and receptor subtype selectivities of the pharmacological tools. Such differences were extremely pronounced in case of proximal readouts, e. g. [32P]GTPase or [35S]GTPγS binding assays. To improve the predictability of in vitro investigations, the aim of this study was to establish a reporter gene assay for human, murine and rat H4Rs, using bioluminescence as a more distal readout. For this purpose a cAMP responsive element (CRE) controlled luciferase reporter gene assay was established in HEK293T cells, stably expressing the human (h), the mouse (m) or the rat (r) H4R. The potencies and efficacies of 21 selected ligands (agonists, inverse agonists and antagonists) were determined and compared with the results obtained from proximal readouts. The potencies of the examined ligands at the human H4R were consistent with reported data from [32P]GTPase or [35S]GTPγS binding assays, despite a tendency toward increased intrinsic efficacies of partial agonists. The differences in potencies of individual agonists at the three H4R orthologs were generally less pronounced compared to more proximal readouts. In conclusion, the established reporter gene assay is highly sensitive and reliable. Regarding discrepancies compared to data from functional assays such as [32P]GTPase and [35S]GTPγS binding, the readout may reflect multifactorial causes downstream from G-protein activation, e. g. activation/amplification of or cross-talk between different signaling pathways

    Impacts of the Deepwater Horizon Oil Spill on Marine Mammals and Sea Turtles

    No full text
    The Gulf of Mexico (GOM) is one of the most diverse ecosystems in the world (Fautin et al. PLoS One 5(8):e11914, 2010). Twenty-one species of marine mammals and five species of sea turtles were routinely identified in the region by the end of the twenty-first century (Waring et al. NOAA Tech Memo NMFS NE 231:361, 2015), a decrease from approximately 39 species prior to intensive exploitation (Darnell RM. The American sea: a natural history of the Gulf of Mexico. Texas A&M University Press, College Station, TX, 2015). Life histories of these megafauna species range from hyperlocal residence patterns of bottlenose dolphins to inter-ocean migrations of leatherback turtles. All species are subject to direct and indirect impacts associated with human activities. These impacts have intensified with major development and extraction efforts since the 1940s. The Deepwater Horizon (DWH) oil spill represents a new type of injury to this system: Unlike previous large oil spills, it not only exposed marine megafauna to surface slicks, it also involved an unprecedented release of dispersed oil into deep waters and pelagic habitats, where effects are difficult to observe and quantify. This chapter synthesizes the research conducted following the DWH oil spill to characterize acute and chronic offshore effects on oceanic marine mammals and sea turtles. Marine mammals and sea turtles were exposed to unprecedented amounts of oil and dispersants. Local declines in marine mammal presence observed using passive acoustic monitoring data suggest that the acute and chronic population-level impacts of this exposure were likely high and were underestimated based on coastal observations alone. These population declines may be related to reduced reproductive success as observed in nearshore proxies. Long-term monitoring of oceanic marine mammals is a focus of this chapter because impacts to these populations have not been extensively covered elsewhere. We provide an overview of impacts to sea turtles and coastal marine mammals, but other more thorough resources are referenced for in depth reviews of these more widely covered species

    Connectivity in the network macrostructure of Tursiops truncatus in the Pelagos Sanctuary (NW Mediterranean Sea): does landscape matter?

    No full text
    The bottlenose dolphin (Tursiops truncatus Montagu, 1821) is a regularly observed species in the Mediterranean Sea, but its network organization has never been investigated on a large scale. We described the network macrostructure of the bottlenose dolphin (meta)population inhabiting the Pelagos Sanctuary (a wide protected area located in the north-western portion of the Mediterranean basin) and we analysed its connectivity in relation to the landscape traits. We pooled effort and sighting data collected by 13 different research institutions operating within the Pelagos Sanctuary from 1994 to 2011 to examine the distribution of bottlenose dolphins in the Pelagos study area and then we applied a social network analysis, investigating the association patterns of the photo-identified dolphins (806 individuals in 605 sightings). The bottlenose dolphin (meta)population inhabiting the Pelagos Sanctuary is clustered in discrete units whose borders coincide with habitat breakages. This complex structure seems to be shaped by the geo-morphological and ecological features of the landscape, through a mechanism of local specialization of the resident dolphins. Five distinct clusters were identified in the (meta)population and two of them were solid enough to be further investigated and compared. Significant differences were found in the network parameters, suggesting a different social organization of the clusters, possibly as a consequence of the different local specialization
    corecore