63 research outputs found

    Magnetic-Field-Induced 4f-Octupole in CeB6 Probed by Resonant X-ray Diffraction

    Get PDF
    CeB6, a typical Gamma_8-quartet system, exhibits a mysterious antiferroquadrupolar ordered phase in magnetic fields, which is considered as originating from the T_{xyz}-type magnetic octupole moment induced by the field. By resonant x-ray diffraction in magnetic fields, we have verified that the T_{xyz}-type octupole is indeed induced in the 4f-orbital of Ce with a propagation vector (1/2, 1/2, 1/2), thereby supporting the theory. We observed an asymmetric field dependence of the intensity for an electric quadrupole (E2) resonance when the field was reversed, and extracted a field dependence of the octupole by utilizing the interference with an electric dipole (E1) resonance. The result is in good agreement with that of the NMR-line splitting, which reflects the transferred hyperfine field at the Boron nucleus from the anisotropic spin distribution of Ce with an O_{xy}-type quadrupole. The field-reversal method used in the present study opens up the possibility of being widely applied to other multipole ordering systems such as NpO2, Ce_{x}La_{1-x}B_{6}, SmRu_{4}P_{12}, and so on.Comment: 5 pages, 4 figures, submitte

    Non Magnetic Impurities in the Spin-Gap Phase of the Cuprate

    Full text link
    It is now well established that Zn doping of high-TCT_C cuprates reduces their TCT_C and triggers the appearence of a spin glass phase. In this context, we have solved exactly the problem of N non magnetic impurities in the staggered flux phase of the Heisenberg model which we assume to be a good mean-field approximation for the spin-gap phase of the cuprates. In this model, the quasiparticule spectrum has four nodes on the Fermi surface, and linearization of the spectrum in the neighbourhood of these nodes leads to a system of 2D Dirac fermions. In the presence of a macroscopic number of (non magnetic) impurities, the problem has a characteristic logarithmic structure that renders ineffective the usual perturbative expansions. We have used this logarithmic structure to calculate an exact solution. For a concentration ni of impurities in the unitary scattering limit, the additional density of states is found to be proportional to ni/(wln2(w/D))ni/(w \ln^2 (|w|/D)) (where D is the infrared cut-off of the linearized spectrum) in analogy with the 1D case of doped spin-Peierls and two-leg ladders compounds. We argue that the system exhibits a quasi long-range order at T=0 with instantaneous spin-spin correlations decreasing as ni/ln4(ni/Rij)ni/ \ln^4 (ni/R_{ij}) for large distances RijR_{ij} between impurity sites. We predict enhanced low energy fluctuations and compare these results to NMR and inelastic neutron scattering experiments in the high-TCT_C cuprates.Comment: proceeding of SCES98 conference in Paris, July '9

    Spontaneous deformation of the Fermi surface due to strong correlation in the two-dimensional t-J model

    Full text link
    Fermi surface of the two-dimensional t-J model is studied using the variational Monte Carlo method. We study the Gutzwiller projected d-wave superconducting state with an additional variational parameter t'_v corresponding to the next-nearest neighbor hopping term. It is found that the finite t'_v<0 gives the lowest variational energy in the wide range of hole-doping rates. The obtained momentum distribution function shows that the Fermi surface deforms spontaneously. It is also shown that the van Hove singularity is always located very close to the Fermi energy. Using the Gutzwiller approximation, we show that this spontaneous deformation is due to the Gutzwiller projection operator or the strong correlation.Comment: 4 pages, 3 eps figures, revte

    High energy spin excitations in YBa_2 Cu_3 O_{6.5}

    Full text link
    Inelastic neutron scattering has been used to obtain a comprehensive description of the absolute dynamical spin susceptibility χ(q,ω)\chi'' (q,\omega) of the underdoped superconducting cuprate YBa_2 Cu_3 O_{6.5} (Tc=52KT_c = 52 K) over a wide range of energies and temperatures (2meVω120meV2 meV \leq \hbar \omega \leq 120 meV and 5KT200K5K \leq T \leq 200K). Spin excitations of two different symmetries (even and odd under exchange of two adjacent CuO_2 layers) are observed which, surprisingly, are characterized by different temperature dependences. The excitations show dispersive behavior at high energies.Comment: 15 pages, 5 figure

    Low-energy magnetic response of the noncentrosymmetric heavy-fermion superconductor CePt3Si studied via inelastic neutron scattering

    Full text link
    The low-energy magnetic excitations of the noncentrosymmetric heavy-fermion superconductor CePt3Si have been measured with inelastic neutron scattering on a single crystal. Kondo-type spin fluctuations with an anisotropic wave vector dependence are observed in the paramagnetic state. These fluctuations do not survive in the antiferromagnetically ordered state below TN=2.2 K but are replaced by damped spin waves, whose dispersion is much stronger along the c-axis than in other directions. No change is observed in the excitation spectrum or the magnetic order as the system enters the superconducting state below Tc=0.7 K.Comment: Revised version: 8 pages, 7 figure

    Magnetic order and multipole interactions in CexPr1-xB6 solid solutions

    Get PDF
    Magnetic ordering phenomena in CexPr1-xB6 solid solutions have been studied using both powder and single-crystal neutron diffraction. A variety of magnetic structures are observed depending on temperature and Ce concentration. Over a broad composition range (x \le 0.7), Pr-Pr interactions play a dominant role, giving rise to incommensurate structures with wave vectors of the form k{IC1}=(1/4-delta, 1/4, 1/2) or k{IC2}=(1/4-delta, 1/4-delta, 1/2). The crossover to a CeB6-like regime takes place near x = 0.7-0.8. For the latter composition, the antiferroquadrupolar phase transition observed in transport measurements precedes the onset, at lower temperature, of a commensurate magnetic order similar to that existing in CeB6. However, unlike in the pure compound, an incommensurate magnetic order is formed at even higher temperature and persists in the antiferroquadrupolar phase down to the lock-in transition. These results are shown to reflect the interplay between various type of dipole exchange and higher multipole interactions in this series of compounds.Comment: Abstract of submission changed to get rid of LaTeX code Minor differences exist between this version and that published in PRB (corrections introduced by publisher

    Superconductivity and spin triplet collective mode in the t-J model close to antiferromagnetic instability

    Full text link
    To investigate relations between long-range antiferromagnetic (AF) order, superconductivity and two particle triplet collective excitations we consider a modified two dimensional t-J model at doping close to half filling. The model includes additional hopping t'' and nearest sites Coulomb repulsion V. The additional parameters allow us to control closeness of the system to the AF instability. We demonstrate the possibility of co-existence of long-range AF order and d-g-wave superconductivity. In the phase with long-range AF order we find, analytically, superconducting gaps and spin wave renormalization. We demonstrate that at approaching the point of the AF instability the spin triplet collective excitation arises with energy below the superconducting gap.Comment: 9 page

    Effect of band filling in the Kondo lattice: A mean-field approach

    Full text link
    The usual Kondo-lattice, including an antiferromagnetic exchange interaction between nearest-neighboring localized spins, is treated here in a mean-field scheme that introduces two mean-field parameters: one associated with the local Kondo effect, and the other related to the magnetic correlations between localized spins. Phases with short-range magnetic correlations or coexistence between those and the Kondo effect are obtained. By varying the number of electrons in the conduction band, we notice that the Kondo effect tends to be suppressed away from half filling, while magnetic correlations can survive if the Heisenberg coupling is strong enough. An enhanced linear coefficient of the specific heat is obtained at low temperatures in the metallic state.Comment: 7 pages, ReVTeX two-column, 7 figure

    Order from Disorder: Non Magnetic Impurities in the Spin-gap Phase of the Cuprates

    Full text link
    We solve the problem of NN non magnetic impurities in the staggered flux phase of the Heisenberg model which we assume to be a good mean-field approximation for the spin-gap phase of the cuprates. The density of states is evaluated exactly in the unitary limit and is porportional to 1/\left (\omega \ln^2(|\omega|/D)), in analogy with the 1D case of doped spin-Peierls and two-leg ladders compounds. We argue that the system exhibits a quasi long-range order at T=0 with instantaneous spin-spin correlations decreasing as n_i/ \ln^2\left (n_i R_{ij}) for large distances RijR_{ij} and we predict enhanced low energy fluctuations in Neutron Scattering.Comment: 4 pages, corrected typos, references adde

    Superexchange coupling and spin susceptibility spectral weight in undoped monolayer cuprates

    Full text link
    A systematic inelastic neutron scattering study of the superexchange interaction in three different undoped monolayer cuprates (La_2CuO_4, Nd_2CuO_4 and Pr_2CuO_4) has been performed using conventional triple axis technique. We deduce the in-plane antiferromagnetic (AF) superexchange coupling JJ which actually presents no simple relation versus crystallographic parameters. The absolute spectral weight of the spin susceptibility has been obtained and it is found to be smaller than expected even when quantum corrections of the AF ground state are taken into account.Comment: 13 pages, 1 table, 3 figure
    corecore