31 research outputs found

    Dysphagia in non-intubated patients affected by COVID-19 infection

    Get PDF
    Purpose Patients affected by COVID-19 are assumed to be at high risk of developing swallowing disorders. However, to our best knowledge, data on the characteristics and incidence of dysphagia associated with COVID-19 are lacking, especially in non-intubated patients. Therefore, we investigated the onset of swallowing disorders in patients with laboratory-confirmed COVID-19 infection who have not been treated with invasive ventilation, in order to evaluate how the virus affected swallowing function regardless of orotracheal intubation. Methods We evaluated 41 patients admitted to the COVID department of our Hospital when they had already passed the acute phase of the disease and were therefore asymptomatic but still positive for SARS-CoV-2 RNA by RT-PCR. We examined patients' clinical history and performed the Volume-Viscosity Swallow Test (VVST). Each patient also answered the Swallowing Disturbance Questionnaire (SDQ). After 6 months, we performed a follow-up in patients with swallowing disorders. Results Eight of 41 patients (20%) presented with dysphagia symptoms during hospitalization and 2 of them (25%) still presented a SDQ high score and swallowing disorders with liquid consistency after 6 months. Conclusion Non-intubated patients can experience various grades of swallowing impairment that probably directly related to pulmonary respiratory function alterations and viral direct neuronal lesive activity. Although these symptoms show natural tendency to spontaneous resolution, their impact on a general physical impaired situation should not be underestimated, since it can adversely affect patients' recovery from COVID-19 worsening health outcomes

    Critical range of soil organic carbon in southern Europe lands under desertification risk

    Get PDF
    Soil quality is fundamental for ecosystem long term functionality, productivity and resilience to current climatic changes. Despite its importance, soil is lost and degraded at dramatic rates worldwide. In Europe, the Mediterranean areas are a hotspot for soil erosion and land degradation due to a combination of climatic conditions, soils, geomorphology and anthropic pressure. Soil organic carbon (SOC) is considered a key indicator of soil quality as it relates to other fundamental soil functions supporting crucial ecosystem services. In the present study, the functional relationships among SOC and other important soil properties were investigated in the topsoil of 38 sites under different land cover and management, distributed over three Mediterranean regions under strong desertification risk, with the final aim to define critical SOC ranges for fast loss of important soil functionalities. The study sites belonged to private and public landowners seeking to adopt sustainable land management practices to support ecosystem sustainability and productivity of their land. Data showed a very clear relationship between SOC concentrations and the other analyzed soil properties: total nitrogen, bulk density, cation exchange capacity, available water capacity, microbial biomass, C fractions associated to particulate organic matter and to the mineral soil component and indirectly with net N mineralization. Below 20 g SOC kg−1, additional changes of SOC concentrations resulted in a steep variation of all the analyzed soil indicators, an order of magnitude higher than the changes occurring between 50 and 100 g SOC kg−1 and 3–4 times the changes observed at 20–50 g SOC kg−1. About half of the study sites showed average SOC concentration of the topsoil centimetres <20 g SOC kg−1. For these areas the level of SOC might hence be considered critical and immediate and effective recovery management plans are needed to avoid complete land degradation in the next future.info:eu-repo/semantics/publishedVersio

    Tuberculosis in Kindergarten and Primary School, Italy, 2008–2009

    Get PDF
    An outbreak of tuberculosis (TB) in Italy involved 19 schoolchildren with active TB and 43 with latent infection. The source of the outbreak was a school assistant born in Italy who had a family history of TB. This outbreak highlights the need for maintaining clinical and public health expertise in countries with low TB incidence

    Taller de Lectura y Escritura : Cuaderno de estudios

    Get PDF
    El Taller de Lectura y Escritura I de la Licenciatura en Comunicación Social y el Taller de Lectura y Escritura de la Tecnicatura Superior Universitaria en Comunicación Pública y Política proponen un desarrollo en un cuatrimestre en el primer cuatrimestre del primer año de las carreras, y relaciona a los/as/es estudiantes con las prácticas de lectura y la escritura desde el punto de vista de la comunicación, trabajando a estas prácticas, recorriendo una línea de tiempo la memoria universal y latinoamericana. El eje de análisis para el abordaje analítico de cada texto implica abordar con la lectura y la escritura, casi simultáneamente a un/a/e autor/a/e, un texto y un contexto particular desde una perspectiva de la comunicación y desde el arte: la triada texto-contexto-autor/a/e. Porque para entender quién dijo qué, se debe comprender el momento histórico en el que lo hizo. El Taller piensa a la escritura como la herramienta central en el ejercicio profesional del campo de la comunicación; propone la lectura contextual como el punto de vista de la disciplina frente al abordaje de un texto.Facultad de Periodismo y Comunicación Socia

    The impact of chest CT body composition parameters on clinical outcomes in COVID-19 patients

    Get PDF
    We assessed the impact of chest CT body composition parameters on outcomes and disease severity at hospital presentation of COVID-19 patients, focusing also on the possible mediation of body composition in the relationship between age and death in these patients. Chest CT scans performed at hospital presentation by consecutive COVID-19 patients (02/27/2020-03/13/2020) were retrospectively reviewed to obtain pectoralis muscle density and total, visceral, and intermuscular adipose tissue areas (TAT, VAT, IMAT) at the level of T7-T8 vertebrae. Primary outcomes were: hospitalization, mechanical ventilation (MV) and/or death, death alone. Secondary outcomes were: C-reactive protein (CRP), oxygen saturation (SO2), CT disease extension at hospital presentation. The mediation of body composition in the effect of age on death was explored. Of the 318 patients included in the study (median age 65.7 years, females 37.7%), 205 (64.5%) were hospitalized, 68 (21.4%) needed MV, and 58 (18.2%) died. Increased muscle density was a protective factor while increased TAT, VAT, and IMAT were risk factors for hospitalization and MV/death. All these parameters except TAT had borderline effects on death alone. All parameters were associated with SO2 and extension of lung parenchymal involvement at CT; VAT was associated with CRP. Approximately 3% of the effect of age on death was mediated by decreased muscle density. In conclusion, low muscle quality and ectopic fat accumulation were associated with COVID-19 outcomes, VAT was associated with baseline inflammation. Low muscle quality partly mediated the effect of age on mortality.We assessed the impact of chest CT body composition parameters on outcomes and disease severity at hospital presentation of COVID-19 patients, focusing also on the possible mediation of body composition in the relationship between age and death in these patients. Chest CT scans performed at hospital presentation by consecutive COVID-19 patients (02/ 27/2020-03/13/2020) were retrospectively reviewed to obtain pectoralis muscle density and total, visceral, and intermuscular adipose tissue areas (TAT, VAT, IMAT) at the level of T7-T8 vertebrae. Primary outcomes were: hospitalization, mechanical ventilation (MV) and/or death, death alone. Secondary outcomes were: C-reactive protein (CRP), oxygen saturation (SO2), CT disease extension at hospital presentation. The mediation of body composition in the effect of age on death was explored. Of the 318 patients included in the study (median age 65.7 years, females 37.7%), 205 (64.5%) were hospitalized, 68 (21.4%) needed MV, and 58 (18.2%) died. Increased muscle density was a protective factor while increased TAT, VAT, and IMAT were risk factors for hospitalization and MV/death. All these parameters except TAT had borderline effects on death alone. All parameters were associated with SO2 and extension of lung parenchymal involvement at CT; VAT was associated with CRP. Approximately 3% of the effect of age on death was mediated by decreased muscle density. In conclusion, low muscle quality and ectopic fat accumulation were associated with COVID-19 outcomes, VAT was associated with baseline inflammation. Low muscle quality partly mediated the effect of age on mortality

    Conversion Coatings for Aluminium Alloys: A Surface Investigation for Corrosion Mechanisms.

    No full text
    Cr(VI) based conversion coatings are currently the treatments of choice for aluminium alloys to prevent corrosion, and are widely used in the aerospace industry also because of their good electrical conductivity and because they are good primers for paints and adhesives. Hexavalent chromium though is harmful for humans and for the environment, thus it needs to be replaced with more environmentally friendly materials. In this work three alternative pre-treatments for aluminium alloys were proposed and their properties were investigated and compared with the performance of a Cr(VI) based treatment. The selected "green" alternatives are based on titanium and zirconium compounds and they were applied to three different aluminium alloys relevant for spacecraft applications: A12219, A17075 and A15083. After the characterization of the chosen materials by means of SEM, AES, XPS, EDX and SAM, some of their surface properties were explored: the adsorption of an epoxy acrylate resin used for UV-cured coatings, and the stability under UV and thermal exposure. The outcome of this preliminary investigation provided the basis for a further selection of materials to use in a corrosion study, and A12219 was chosen as a substrate, together with an hybrid (organic/inorganic) coating, Nabutan STI/310. Alodine 1200S was proposed as chromate treatment and used as reference. A comparison of the behaviour during the exposure to a corrosive environment, as a NaCl solution, was made between the untreated A12219 alloy, and the alloy treated with Nabutan STI/310 and Alodine 1200S. The study was focused on the chemistry in the vicinity of second phase precipitates, which proved to represent initiation sites for corrosion, due to their cathodic nature. The evolution of corrosion reactions was monitored after different times of exposure relocating each time the same intermetallic, by means of SEM, AES, EDX and SAM. The results showed the progressive dissolution of the alloy matrix around the inclusion, and a partial dissolution of the precipitate itself. The inclusions were shown to be inhomogeneous in composition, thus generating cathodic and anodic sites at the intermetallic. The chromate treatment resulted in higher protection, compared to the hybrid alternative

    Conversion Coatings for Aluminium Alloys: A Surface Investigation for Corrosion Mechanisms.

    No full text
    Cr(VI) based conversion coatings are currently the treatments of choice for aluminium alloys to prevent corrosion, and are widely used in the aerospace industry also because of their good electrical conductivity and because they are good primers for paints and adhesives. Hexavalent chromium though is harmful for humans and for the environment, thus it needs to be replaced with more environmentally friendly materials. In this work three alternative pre-treatments for aluminium alloys were proposed and their properties were investigated and compared with the performance of a Cr(VI) based treatment. The selected "green" alternatives are based on titanium and zirconium compounds and they were applied to three different aluminium alloys relevant for spacecraft applications: A12219, A17075 and A15083. After the characterization of the chosen materials by means of SEM, AES, XPS, EDX and SAM, some of their surface properties were explored: the adsorption of an epoxy acrylate resin used for UV-cured coatings, and the stability under UV and thermal exposure. The outcome of this preliminary investigation provided the basis for a further selection of materials to use in a corrosion study, and A12219 was chosen as a substrate, together with an hybrid (organic/inorganic) coating, Nabutan STI/310. Alodine 1200S was proposed as chromate treatment and used as reference. A comparison of the behaviour during the exposure to a corrosive environment, as a NaCl solution, was made between the untreated A12219 alloy, and the alloy treated with Nabutan STI/310 and Alodine 1200S. The study was focused on the chemistry in the vicinity of second phase precipitates, which proved to represent initiation sites for corrosion, due to their cathodic nature. The evolution of corrosion reactions was monitored after different times of exposure relocating each time the same intermetallic, by means of SEM, AES, EDX and SAM. The results showed the progressive dissolution of the alloy matrix around the inclusion, and a partial dissolution of the precipitate itself. The inclusions were shown to be inhomogeneous in composition, thus generating cathodic and anodic sites at the intermetallic. The chromate treatment resulted in higher protection, compared to the hybrid alternative
    corecore