24 research outputs found

    Defining Kawasaki disease and pediatric inflammatory multisystem syndrome-temporally associated to SARS-CoV-2 infection during SARS-CoV-2 epidemic in Italy: results from a national, multicenter survey

    Get PDF
    Background: There is mounting evidence on the existence of a Pediatric Inflammatory Multisystem Syndrome-temporally associated to SARS-CoV-2 infection (PIMS-TS), sharing similarities with Kawasaki Disease (KD). The main outcome of the study were to better characterize the clinical features and the treatment response of PIMS-TS and to explore its relationship with KD determining whether KD and PIMS are two distinct entities. Methods: The Rheumatology Study Group of the Italian Pediatric Society launched a survey to enroll patients diagnosed with KD (Kawasaki Disease Group - KDG) or KD-like (Kawacovid Group - KCG) disease between February 1st 2020, and May 31st 2020. Demographic, clinical, laboratory data, treatment information, and patients' outcome were collected in an online anonymized database (RedCAPÂź). Relationship between clinical presentation and SARS-CoV-2 infection was also taken into account. Moreover, clinical characteristics of KDG during SARS-CoV-2 epidemic (KDG-CoV2) were compared to Kawasaki Disease patients (KDG-Historical) seen in three different Italian tertiary pediatric hospitals (Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste; AOU Meyer, Florence; IRCCS Istituto Giannina Gaslini, Genoa) from January 1st 2000 to December 31st 2019. Chi square test or exact Fisher test and non-parametric Wilcoxon Mann-Whitney test were used to study differences between two groups. Results: One-hundred-forty-nine cases were enrolled, (96 KDG and 53 KCG). KCG children were significantly older and presented more frequently from gastrointestinal and respiratory involvement. Cardiac involvement was more common in KCG, with 60,4% of patients with myocarditis. 37,8% of patients among KCG presented hypotension/non-cardiogenic shock. Coronary artery abnormalities (CAA) were more common in the KDG. The risk of ICU admission were higher in KCG. Lymphopenia, higher CRP levels, elevated ferritin and troponin-T characterized KCG. KDG received more frequently immunoglobulins (IVIG) and acetylsalicylic acid (ASA) (81,3% vs 66%; p = 0.04 and 71,9% vs 43,4%; p = 0.001 respectively) as KCG more often received glucocorticoids (56,6% vs 14,6%; p < 0.0001). SARS-CoV-2 assay more often resulted positive in KCG than in KDG (75,5% vs 20%; p < 0.0001). Short-term follow data showed minor complications. Comparing KDG with a KD-Historical Italian cohort (598 patients), no statistical difference was found in terms of clinical manifestations and laboratory data. Conclusion: Our study suggests that SARS-CoV-2 infection might determine two distinct inflammatory diseases in children: KD and PIMS-TS. Older age at onset and clinical peculiarities like the occurrence of myocarditis characterize this multi-inflammatory syndrome. Our patients had an optimal response to treatments and a good outcome, with few complications and no deaths

    A critical presentation of innovative techniques for automated pollen identification in aerobiological monitoring networks

    No full text
    Pollen grains are one of the major causes of respiratory allergies. We briefly review the role of aerobiological monitoring centers in providing information about airborne pollen concentration for helping allergic patients to reduce exposition to allergens and to start appropriate drug treatments. Spatial and temporal resolution of this information should be increased. However, the effort required by the technique currently used to identify and count the airborne pollen grains hinders this improvement. Therefore, innovative classification approaches were investigated. In particular, we studied the feasibility of methodologies developed in the spectroscopic and biomolecular field, with the aim at providing rapid, accurate and possibly automated airborne pollen concentration measurements. In this chapter the state of the art in this field is outlined as well as our obtained results; we discuss both the proof of principle of the applicability of such techniques for pollen quantification and, from a more practical point of view, the feasibility of implementing them in aerobiological centers as routine identification tools. Possible future improvements of developed techniques to solve current weaknesses are also examined

    AFM and Raman study of graphene deposited on silicon surfaces nanostructured by ion beam irradiation

    Get PDF
    Nanoscale structures were produced on silicon surfaces by low‐energy O ion irradiation: periodic rippled or terraced patterns formed spontaneously, depending on the chosen combination of beam incidence angle and ion fluence. Atomic force microscopy image processing and analysis accurately described the obtained nano‐topographies. Graphene monolayers grown by chemical vapour deposition were transferred onto the nanostructured silicon surfaces. The interfacial interaction between the textured surface and the deposited graphene governs the conformation of the thin carbon layer; the resulting different degree of regularity and conformality of the substrate‐induced graphene corrugations was studied and it was related to the distinctive topographical features of the silicon nanostructures. Raman spectroscopy revealed specific features of the strain caused by the alternating suspension and contact with the underlying nanostructures and the consequent modulation of the silicon‐graphene interaction

    Multi-Tiered Proveniencing Analysis of Early Holocene Radiolarite Artifacts from Northern Spain.

    No full text
    Radiolarite is a fossil-rich derivative of biogenic chert found in isolated geologic formations across northern Spain. This inconsistent presence on the landscape has often led archaeologists to misidentify it with other siliceous rock types. However, as the proveniencing of lithic raw materials increase in Spain, archaeologists are becoming more aware of radiolarite and its possible unique technological, typological, and social significance in prehistoric cultures. This paper will present the results of a multi-tiered analytical program that combines the results of macroscopic, petrographic, and geochemical analyses to characterize and compare natural and human altered radiolarite samples from the northern coast of Asturias, Spain. Natural radiolarite source areas were identified, sampled, and analyzed from the montane and coastal region of eastern Asturias. Using the same analytical techniques, these results were compared to radiolarite artifacts originating from the Early Holocene assemblages in the El Mazo rockshelter site located in proximity to the identified source areas. By establishing the geographic presence and geologic characterization of radiolarite, archaeologist will have new empirical data in which to help define how hunter-gatherer-fisher cultures: 1) organized stone procurement strategies, 2) moved and settled across the landscape, and 3) utilized stone material in a sociocultural context

    Active rearrangements in the cell wall follow polymer concentration during postharvest withering in the berry skin of Vitis vinifera cv. Corvina

    No full text
    During grape postharvest withering, a worldwide practice used to produce important high-quality wines, the solute concentration increases due to dehydration, and many organoleptic and quality traits, especially related to the berry skin, are affected in a cultivar-specific manner. Nevertheless, a complete comprehension of the underlying processes is still lacking. In this work, we applied ATR-FTIR micro-spectroscopy combined with PCA to monitor cell wall biochemical changes at three stages during postharvest withering on the internal and external sides of the berry skin of the Vitis vinifera cv. Corvina, an important local variety of the Verona province in Italy. The obtained results were integrated by profiling xylogucans and pectins through immunohistochemistry and by genome-wide transcriptomic analysis performed at the same withering stages. Our analysis indicates a gradual passive polymer concentration due to water loss in the first two months of postharvest withering, followed by active structural modifications in the last month of the process. Such rearrangements involve xyloglucans in the internal surface, cuticle components and cellulose in the external surface, and pectins in both surfaces. Moreover, by investigating the expression trend of cell wall metabolism-related genes, we identified several putative molecular markers associated to the polymer dynamics. The present study represents an important step towards an exhaustive comprehension of the postharvest withering process, which is of great interest from both the biological and technological points of view

    Mechanosensing at the nanoscale: the influence of thermoplastic nanostructures on neural cells

    No full text
    It is well established that the behavior of neural cells is influenced by geometrical patterns in the micrometric and sub-micrometric range. Here we present two different types of periodical patterns in the nanometric range (i.e. with a typical features having a lateral size ≀ 100 nm) and their impact on cell contact guidance. In the first case, hierarchical periodic nano-rippled structure (i.e. nano-ripples) made by ion-bombardment technique were replicated on top of polyethylene terephtalate (PET) films. We demonstrated that Schwann cells actively interact with these nanorippled surfaces, showing perpendicular contact guidance and improved adhesion and proliferation with respect to standard flat substrates. The second type of scaffolds here presented consist in cyclic-olefin-copolymer (COC) nanogratings with periodicity (down to 200nm -50% duty cycle), obtained by hot embossing from photoresist molds fabricated by interference lithography. In this case, we coupled the substrates with the PC12 neuronal cell line and measured the neurite alignment and focal adhesion (FA) morphometric parameters. We show optimal contact guidance in the case of periodicity > 400nm, while a progressive degradation of polarized alignment appears by further decreasingthe grating lateral dimensions, correlating with FA shaping. These results set for the first time a lower limit in grating periodicity for effective neurite contact guidance. Altogether thesestudies provide interesting elements for regenerative medicine applications and for developing artificial neural interfaces

    Influence of olive (cv Grignano) fruit ripening and oil extraction under different nitrogen regimes on volatile organic compound emissions studied by PTR-MS technique

    No full text
    Volatile organic compounds of extra virgin olive oils obtained from the local Italian cultivar Grignano were measured by proton transfer reaction–mass spectrometry (PTR-MS). Oils were extracted by olives harvested at different ripening stages across veraison, performing each extraction step and the whole extraction process in nitrogen atmosphere to observe the changes in the volatile profiles of the oils. Principal component analysis carried out on the full spectral signature of the PTR-MS measurements showed that the stage of ripening has a stronger effect on the global definition of volatile profiles than the use of nitrogen during oil extraction. The fingerprint-like chemical information provided by the spectra were used to construct a heat map, which allowed the dynamical representation of the multivariate nature of mass evolution during the ripening process. This provided the first evidence that some groups of volatile organic compounds displayed a time course of regulation with coordinated increasing or decreasing trends in association with specific stages of fruit ripening

    Using a liquid metal alloy ion source for FIB patterning of noble metal plasmonic nanostructures

    No full text
    Plasmonic devices based on noble metal nanostructures have been extensively investigated in the last 20 years and nowadays their applications cover a wide spectrum of sectors. They are typically based on regular arrays of metal structures with sizes ranging from few to several hundreds of nm’s, sub-”m periodicity, precise shape and positioning. Their fabrication requires extremely high-resolution patterning techniques like UV and deep-UV optical lithography, electron beam lithography (EBL) and focused ion beam (FIB) patterning, among others. In particular, FIB patterning can be an excellent prototype fabrication solution, offering the advantages of maskless-direct writing, flexibility in design, and functionalization by ion beam-solid interactions. Gallium based liquid metal ion sources (LMIS) have been for several decades the main choice for focused ion beam instruments (FIB). More recently, FIB columns equipped with liquid metal alloy ion sources (LMAIS) were implemented for nanopatterning. LMAIS working principle is essentially the same as the one for Ga-LMIS, exploiting the Taylor cone formed by applying an electric field to a tip wetted by a liquid alloy melted at low temperature. For this reason, eutectic alloys are usually exploited, e.g. the gold based ones Au-Si, Au-Ge or Au-Ge-Si. The latter can also offer more flexibility on ion choice, allowing selecting adequate species and charge depending on the needs of lateral resolution, sputtering yield and possible surface functionalization. In this work, two examples of LMAIS FIB patterning for plasmonic applications will be reported. In the first, regular arrays of silver nanostructures were milled by Au through 110 nm thick Ag films, deposited on silicon photodiodes. Aim of the experiment was the exploitation of the surface plasmon polaritrons induced by the Ag gratings to excite highly-confined modes by irradiation, enhancing in this way the absorption of near-infrared radiation photons close to the active depth of the photodiodes. A FIB process was defined after calibrating the milling rate by atomic force microscopy and characterizing the contamination depth of the Au ions in the active area of photodiodes by secondary ion mass spectrometry. Electro-optical characterization proved the success of nanofabrication. In the second example, high-resolution patterning was carried out in order to produce regular (566 nm period) inverted honeycomb arrays through 20 nm thick Au films that work as efficient refractive index sensors. Focused beams of Si , Ge , Au and Au were tested in order to identify the best fabrication process, in particular to find the best combination of current and ion dose for species to mill lines with the required depth and lateral width

    Pectins, Hemicelluloses and Celluloses Show Specific Dynamics in the Internal and External Surfaces of Grape Berry Skin During Ripening

    No full text
    Grapevine berry skin is a complex structure that contributes to the final size and shape of the fruit and affects its quality traits. The organization of cell wall polysaccharides in situ and their modification during ripening are largely uncharacterized. The polymer structure of Corvina berry skin, its evolution during ripening and related modifying genes were determined by combing mid-infrared micro-spectroscopy and multivariate statistical analysis with transcript profiling and immunohistochemistry. Spectra were acquired in situ using a surface-sensitive technique on internal and external sides of the skin without previous sample pre-treatment, allowing comparison of the related cell wall polymer dynamics. The external surface featured cuticle-related bands; the internal surface showed more adsorbed water. Application of surface-specific normalization revealed the major molecular changes related to hemicelluloses and pectins in the internal surface and to cellulose and pectins in the external surface and that they occur between mid-ripening and full ripening in both sides of the skin. Transcript profiling of cell wall-modifying genes indicated a general suppression of cell wall metabolism during ripening. Genes related to pectin metabolism\u2014a b-galactosidase, a pectin(methyl) esterase and a pectate lyase\u2014and a xyloglucan endotransglucosylase/ hydrolase, involved in hemicellulose modification, showed enhanced expression. In agreement with Fourier transform infrared spectroscopy, patterns due to pectin methyl esterification provided new insights into the relationship between pectin modifications and the associated transcript profile during skin ripening. This study proposes an original description of polymer dynamics in grape berries during ripening, highlighting differences between the internal and external sides of the skin
    corecore