30,917 research outputs found

    The selection, appraisal and retention of digital scientific data: dighlights of an ERPANET/CODATA workshop

    Get PDF
    CODATA and ERPANET collaborated to convene an international archiving workshop on the selection, appraisal, and retention of digital scientific data, which was held on 15-17 December 2003 at the Biblioteca Nacional in Lisbon, Portugal. The workshop brought together more than 65 researchers, data and information managers, archivists, and librarians from 13 countries to discuss the issues involved in making critical decisions regarding the long-term preservation of the scientific record. One of the major aims for this workshop was to provide an international forum to exchange information about data archiving policies and practices across different scientific, institutional, and national contexts. Highlights from the workshop discussions are presented

    Design of a Multi-Moon Orbiter

    Get PDF
    The Multi-Moon Orbiter concept is introduced, wherein a single spacecraft orbits several moons of Jupiter, allowing long duration observations. The ΔV requirements for this mission can be low if ballistic captures and resonant gravity assists by Jupiter’s moons are used. For example, using only 22 m/s, a spacecraft initially injected in a jovian orbit can be directed into a capture orbit around Europa, orbiting both Callisto and Ganymede enroute. The time of flight for this preliminary trajectory is four years, but may be reduced by striking a compromise between fuel and time optimization during the inter-moon transfer phases

    Application of dynamical systems theory to a very low energy transfer

    Get PDF
    We use lobe dynamics in the restricted three-body problem to design orbits with prescribed itineraries with respect to the resonance regions within a Hill’s region. The application we envision is the design of a low energy trajectory to orbit three of Jupiter’s moons using the patched three-body approximation (P3BA). We introduce the “switching region,” the P3BA analogue to the “sphere of influence.” Numerical results are given for the problem of finding the fastest trajectory from an initial region of phase space (escape orbits from moon A) to a target region (orbits captured by moon B) using small controls

    Building capacity for evidence-based public health: Reconciling the pulls of practice and the push of research

    Get PDF
    Timely implementation of principles of evidence-based public health (EBPH) is critical for bridging the gap between discovery of new knowledge and its application. Public health organizations need sufficient capacity (the availability of resources, structures, and workforce to plan, deliver, and evaluate the preventive dose of an evidence-based intervention) to move science to practice. We review principles of EBPH, the importance of capacity building to advance evidence-based approaches, promising approaches for capacity building, and future areas for research and practice. Although there is general agreement among practitioners and scientists on the importance of EBPH, there is less clarity on the definition of evidence, how to find it, and how, when, and where to use it. Capacity for EBPH is needed among both individuals and organizations. Capacity can be strengthened via training, use of tools, technical assistance, assessment and feedback, peer networking, and incentives. Modest investments in EBPH capacity building will foster more effective public health practice

    The cognitive demands of second order manual control: Applications of the event related brain potential

    Get PDF
    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP

    Economics, Design, and Operation of Sewage-Treatment Plants

    Get PDF

    Constructing a Low Energy Transfer Between Jovian Moons

    Get PDF
    There has recently been considerable interest in sending a spacecraft to orbit Europa, the smallest of the four Galilean moons of Jupiter. The trajectory design involved in effecting a capture by Europa presents formidable challenges to traditional conic analysis since the regimes of motion involved depend heavily on three-body dynamics. New three-body perspectives are required to design successful and efficient missions which take full advantage of the natural dynamics. Not only does a three-body approach provide low-fuel trajectories, but it also increases the flexibility and versatility of missions. We apply this approach to design a new mission concept wherein a spacecraft "leap-frogs" between moons, orbiting each for a desired duration in a temporary capture orbit. We call this concept the "Petit Grand Tour." For this application, we apply dynamical systems techniques developed in a previous paper to design a Europa capture orbit. We show how it is possible, using a gravitional boost from Ganymede, to go from a jovicentric orbit beyond the orbit of Ganymede to a ballistic capture orbit around Europa. The main new technical result is the employment of dynamical channels in the phase space - tubes in the energy surface which naturally link the vicinity of Ganymede to the vicinity of Europa. The transfer V necessary to jump from one moon to another is less than half that required by a standard Hohmann transfer

    Invariant Manifolds, the Spatial Three-Body Problem and Space Mission Design

    Get PDF
    The invariant manifold structures of the collinear libration points for the spatial restricted three-body problem provide the framework for understanding complex dynamical phenomena from a geometric point of view. In particular, the stable and unstable invariant manifold \tubes" associated to libration point orbits are the phase space structures that provide a conduit for orbits between primary bodies for separate three-body systems. These invariant manifold tubes can be used to construct new spacecraft trajectories, such as a \Petit Grand Tour" of the moons of Jupiter. Previous work focused on the planar circular restricted three-body problem. The current work extends the results to the spatial case

    Heteroclinic connections between periodic orbits and resonance transitions in celestial mechanics

    Get PDF
    In this paper we apply dynamical systems techniques to the problem of heteroclinic connections and resonance transitions in the planar circular restricted three-body problem. These related phenomena have been of concern for some time in topics such as the capture of comets and asteroids and with the design of trajectories for space missions such as the Genesis Discovery Mission. The main new technical result in this paper is the numerical demonstration of the existence of a heteroclinic connection between pairs of periodic orbits: one around the libration point L1 and the other around L2, with the two periodic orbits having the same energy. This result is applied to the resonance transition problem and to the explicit numerical construction of interesting orbits with prescribed itineraries. The point of view developed in this paper is that the invariant manifold structures associated to L1 and L2 as well as the aforementioned heteroclinic connection are fundamental tools that can aid in understanding dynamical channels throughout the solar system as well as transport between the "interior" and "exterior" Hill's regions and other resonant phenomena
    corecore