1,136 research outputs found

    Atmospheric hydroxyl radical (OH) abundances from ground-based ultraviolet solar spectra: an improved retrieval method

    Get PDF
    The Fourier Transform Ultraviolet Spectrometer (FTUVS) instrument has recorded a long-term data record of the atmospheric column abundance of the hydroxyl radical (OH) using the technique of high resolution solar absorption spectroscopy. We report new efforts in improving the precision of the OH measurements in order to better model the diurnal, seasonal, and interannual variability of odd hydrogen (HOx) chemistry in the stratosphere, which, in turn, will improve our understanding of ozone chemistry and its long-term changes. Until the present, the retrieval method has used a single strong OH absorption line P1(1) in the near-ultraviolet at 32,341 cm−1. We describe a new method that uses an average based on spectral fits to multiple lines weighted by line strength and fitting precision. We have also made a number of improvements in the ability to fit a model to the spectral feature, which substantially reduces the scatter in the measurements of OH abundances

    Using Intervention Mapping to Develop an Efficacious Multicomponent Systems-Based Intervention to Increase Human Papillomavirus (HPV) Vaccination in a Large Urban Pediatric Clinic Network

    Get PDF
    Background: The CDC recommends HPV vaccine for all adolescents to prevent cervical, anal, oropharyngeal, vaginal, vulvar, and penile cancers, and genital warts. HPV vaccine rates currently fall short of national vaccination goals. Despite evidence-based strategies with demonstrated efficacy to increase HPV vaccination rates, adoption and implementation of these strategies within clinics is lacking. The Adolescent Vaccination Program (AVP) is a multicomponent systems-based intervention designed to implement five evidence-based strategies within primary care pediatric practices. The AVP has demonstrated efficacy in increasing HPV vaccine initiation and completion among adolescents 10-17 years of age. The purpose of this paper is to describe the application of Intervention Mapping (IM) toward the development, implementation, and formative evaluation of the clinic-based AVP prototype. Methods: Intervention Mapping (IM) guided the development of the Adolescent Vaccination Program (AVP). Deliverables comprised: a logic model of the problem (IM Step 1); matrices of behavior change objectives (IM Step 2); a program planning document comprising scope, sequence, theory-based methods, and practical strategies (IM Step 3); functional AVP component prototypes (IM Step 4); and plans for implementation (IM Step 5) and evaluation (IM Step 6). Results: The AVP consists of six evidence-based strategies implemented in a successful sequenced roll-out that (1) established immunization champions in each clinic, (2) disseminated provider assessment and feedback reports with data-informed vaccination goals, (3) provided continued medical and nursing education (with ethics credit) on HPV, HPV vaccination, message bundling, and responding to parent hesitancy, (4) electronic health record cues to providers on patient eligibility, and (5) patient reminders for HPV vaccine initiation and completion. Conclusions: IM provided a logical and systematic approach to developing and evaluating a multicomponent systems-based intervention to increase HPV vaccination rates among adolescents in pediatric clinics

    Validation of Aura Microwave Limb Sounder OH measurements with Fourier Transform Ultra-Violet Spectrometer total OH column measurements at Table Mountain, California

    Get PDF
    The first seasonal and interannual validation of OH measurements from the Aura Microwave Limb Sounder (MLS) has been conducted using ground-based OH column measurements from the Fourier Transform Ultra-Violet Spectrometer (FTUVS) over the Jet Propulsion Laboratory's Table Mountain Facility (TMF) during 2004–2007. To compare with FTUVS total column measurements, MLS OH vertical profiles over TMF are integrated to obtain partial OH columns above 21.5 hPa, which covers nearly 90% of the total column. The tropospheric OH and the lower stratopheric OH not measured by MLS are estimated using GEOS (Goddard Earth Observing System)-Chem and a Harvard 2-D model implemented within GEOS-Chem, respectively. A number of field observations and calculations from a photochemical box model are compared to OH profiles from these models to estimate the variability in the lower atmospheric OH and thus the uncertainty in the combined total OH columns from MLS and models. In general, the combined total OH columns agree extremely well with TMF total OH columns, especially during seasons with high OH. In winter with low OH, the combined columns are often higher than TMF measurements. A slightly weaker seasonal variation is observed by MLS relative to TMF. OH columns from TMF and the combined total columns from MLS and models are highly correlated, resulting in a mean slope of 0.969 with a statistically insignificant intercept. This study therefore suggests that column abundances derived from MLS vertical profiles have been validated to within the mutual systematic uncertainties of the MLS and FTUVS measurements

    ESD testing and combdrive snap-in in a MEMS tunable grating under shock and vibration

    Get PDF
    This work describes a method for tracking the dynamics of electrostatic discharge (ESD) sensitive MEMS structures during ESD events, as well as a model for determining the reduced combdrive snap-in voltage under vibration and shock. We describe our ESD test setup, based on the human body model, and optimized for high impedance devices. A brief description of the MEMS tunable grating, the test structure used here, and its operation is followed by results of the measured complex device dynamics during ESD events. The device fails at a voltage up to four times higher than that required to bring the parts into contact. We then present a model for the snap-in of combfingers under shock and vibration. We combine the results of the analytical model for combdrive snap-in developed here with a shock response model to compute the critical shock acceleration conditions that can result in combdrive snap-in as a function of the operating voltage. We discuss the validity regimes for the combdrive snap-in model and show how restricting the operation voltage below the snap-in voltage is not a sufficient criterion to ensure reliable operation especially in environments with large disturbances

    Vibration and shock reliability of MEMS: modeling and experimental validation

    Get PDF
    A methodology to predict shock and vibration levels that could lead to the failure of MEMS devices is reported as a function of vibration frequency and shock pulse duration. A combined experimental–analytical approach is developed, maintaining the simplicity and insightfulness of analytical methods without compromising on the accuracy characteristic of experimental methods. The minimum frequency-dependent acceleration that will lead to surfaces coming into contact, for vibration or shock inputs, is determined based on measured mode shapes, damping, resonant frequencies, and an analysis of failure modes, thus defining a safe operating region, without requiring shock or vibration testing. This critical acceleration for failure is a strong function of drive voltage, and the safe operating region is predicted for transport (unbiased) and operation (biased condition). The model was experimentally validated for overdamped and underdamped modes of a comb-drive driven SOI-based tunable grating. In-plane and outofplane vibration (up to 65 g) and shock (up to 6000 g) tests were performed for biased and unbiased conditions, and very good agreement was found between predicted and observed critical accelerations

    Increasing HPV Vaccination in a Network of Pediatric Clinics using a Multi-component Approach

    Get PDF
    Background: Despite continued public health efforts to increase human papillomavirus (HPV) vaccination among adolescents, initiation remains below the level needed to reach the Healthy People 2020 goal of 80% series completion by age 13. Methods: We developed, implemented, and evaluated a multi-component program that used evidence-based strategies to increase HPV vaccine initiation in a network of 51 pediatric clinics in Houston, Texas. Our target populations were the clinic network, healthcare providers, male and female patients ages 11-17, and their parents. The program, called the Adolescent Vaccination Program (AVP), was conducted from March 2016 through March 2019 and contained strategies to increase vaccination including: HPV immunization champions; provider assessment and feedback; provider continuing education; provider reminders; and patient reminders. We used a single group pre/post design with an external comparison – NIS-Teen. Our primary outcome was initiation of the HPV vaccine based on the electronic health record. We used interrupted time series analysis (ITSA) to measure change in initiation over time. We calculated monthly, quarterly, and annual rates of initiation for each physician, clinic, and the network. We examined patterns of initiation by patient age, sex, race/ethnicity, and type of insurance. Results: By the end of the project, the 51 clinics averaged 77.4% initiation. Rates increased annually from September 2015 through March 2019. ITSA analysis over 75 months showed an increase in vaccine initiation of 0.396% per month from the introduction of the program in March 2016. Average individual clinic improvement was 0.37% per month ranging from -0.04% to 0.68% through March 2019. Data for the 11-12 year olds, the target age group for initiating the vaccine, showed a greater percentage increase (54.2%) compared with the 13-17 year olds (29.6%). Hispanics and African Americans had the highest initiation rates in all years while non-Hispanic whites had the lowest. Families without insurance had the lowest rates while those with Medicaid/Medicare had the highest. Conclusions: We observed a secular trend upward in both the network and NIS-Teen data; however, the network showed a steeper increase. The AVP is a promising program of strategies to increase HPV vaccination in a clinic setting

    Commensurate Scale Relations in Quantum Chromodynamics

    Full text link
    We use the BLM method to show that perturbatively-calculable observables in QCD can be related to each other without renormalization scale or scheme ambiguity. We define and study the commensurate scale relations. We show that the commensurate scales satisfy the renormalization group transitivity rule which ensures that predictions in PQCD are independent of the choice of an intermediate renormalization scheme. We generalize the BLM procedure to higher order. The application of this procedure to relate known physical observables in QCD gives surprisingly simple results. In particular, the annihilation ratio Re+eR_{e^+e^-} and the Bjorken sum rule for polarized electroproduction are related through simple coefficients, which reinforces the idea of a hidden symmetry between these two observables.Comment: 35 pages (RevTeX), one PostScript figure included at the end. SLAC-PUB-6481, UMD Preprint #94-13

    Epidemic processes in complex networks

    Get PDF
    In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.Comment: 62 pages, 15 figures, final versio
    corecore