43,720 research outputs found
Borel singularities at small x
D.I.S. at small Bjorken is considered within the dipole cascade
formalism. The running coupling in impact parameter space is introduced in
order to parametrize effects that arise from emission of large size dipoles.
This results in a new evolution equation for the dipole cascade. Strong
coupling effects are analyzed after transforming the evolution equation in
Borel () space. The Borel singularities of the solution are discussed first
for the universal part of the dipole cascade and then for the specific process
of D.I.S. at small . In the latter case the leading infrared renormalon is
at indicating the presence of power corrections for the
small- structure functions.Comment: 5 pages, Latex (Talk presented at DIS'97, Chicago, IL
Condensation, Partial Melting and Evaporation Processes Influence the Bulk Compositions of Spinel-Cored Spherules in the CO3.1 Chondrite Miller Range 90019
Here we focus on spinel-cored spherule calcium-aluminum rich inclusions (CAI), dominantly ~75-80 microns in diameter in the CO3.1 chondrite Miller Range 90019, which make up ~ 12 % of the fine-grained CAIs in one thin section. Their mineralogical content ranges from rare grossite- and hibonite-bearing varieties, through perovskite-melilitebearing, to fassaite-bearing and finally anorthitebearing. Non-spherical CAIs have been divided into 4 other groups, defined based on mineralogical abundances. We also characterized a group of AOAs from this sample. No glass has been recognized in any inclusions. Some relatively evolved members (anorthite-, spinel- + fassaite-bearing) among the spherules are found engulfed in AOAs. We characterized the bulk compositions of ~145 CAIs and AOAs in this meteorite, derived from EDS-x-ray mapping of the inclusions. We determined bulk compositions both with and without Wark-Lovering rims (when present), which are largely composed of diopside forsterite. The balance of the inclusions appear to have not been melted or partially melted, but rather they have textures that indicate they are condensates, often modified by extensive reaction with nebular gases. This presents the opportunity to examine effects on the bulk compositions of spherules resulting potentially from melting plus evaporation. Other aspects of this suite of refractory inclusions have been discussed in these abstracts. Oxygen isotope variations in one spherule were presented in [4]. The latter study showed a complex history of reaction with nebular gases possessing a variety of Oisotope compositions. Additional O isotopic studies of inclusions in this work are included in Mane et al
Analysis of WFPC-2 Core Samples for MMOD Discrimination
An examination of the Hubble Space Telescope Wide Field Planetary Camera 2 (WFPC-2) radiator assembly was conducted at NASA Goddard Space Flight Center during the summer of 2009. Immediately apparent was the predominance of impact features, identified as simple or complex craters, resident only in the thermal paint layer; similar features were observed during a prior survey of the WFPC-1 radiator. Larger impact features displayed spallation zones, darkened areas, and other features not observed in impacts onto bare surfaces. Craters were extracted by coring the radiator in the NASA Johnson Space Centers Space Exposed Hardware cleanroom and were subsequently examined using scanning electron microscopy/energy dispersive X-ray spectroscopy to determine the likely origin, e.g., micrometeoritic or orbital debris, of the impacting projectile. Recently, a selection of large cores was re-examined using a new technique developed to overcome some limitations of traditional crater imaging and analysis. This technique, motivated by thin section analysis, examines a polished, lateral surface area revealed by cross-sectioning the core sample. This paper reviews the technique, the classification rubric as extended by this technique, and results to date
Recommended from our members
Fine-Scale Variations in Eucritic Pyroxene FeO/MnO: Process vs. Provenance.
Most asteroidal igneous rocks are eucrite-like basalts and gabbros, composed mostly of ferroan low- and high-Ca pyroxenes and calcic plagioclase, plus smaller amounts of silica (most commonly tridymite), ilmenite, chromite, troilite, Ca-phosphate, metal and sometimes ferroan olivine. Eucrite-like mafic rocks are fragments of the crusts of differentiated asteroids, and most are likely from 4 Vesta
Gravitoelectromagnetism and Dark Energy in Superconductors
A gravitomagnetic analogue of the London moment in superconductors can
explain the anomalous Cooper pair mass excess reported by Janet Tate.
Ultimately the gravitomagnetic London moment is attributed to the breaking of
the principle of general covariance in superconductors. This naturally implies
non-conservation of classical energy-momentum. Possible relation with the
manifestation of dark energy in superconductors is questioned.Comment: 10 pages. Poster presented at "From Quantum to Cosmos - Fundamental
Physics Research in Space" 22-24 May 2006, To Appear in Int. J. Mod. Phys.
In-vivo magnetic resonance imaging of hyperpolarized silicon particles
Silicon-based micro and nanoparticles have gained popularity in a wide range
of biomedical applications due to their biocompatibility and biodegradability
in-vivo, as well as a flexible surface chemistry, which allows drug loading,
functionalization and targeting. Here we report direct in-vivo imaging of
hyperpolarized 29Si nuclei in silicon microparticles by MRI. Natural physical
properties of silicon provide surface electronic states for dynamic nuclear
polarization (DNP), extremely long depolarization times, insensitivity to the
in-vivo environment or particle tumbling, and surfaces favorable for
functionalization. Potential applications to gastrointestinal, intravascular,
and tumor perfusion imaging at sub-picomolar concentrations are presented.
These results demonstrate a new background-free imaging modality applicable to
a range of inexpensive, readily available, and biocompatible Si particles.Comment: Supplemental Material include
Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBaCuO
High magnetic fields have revealed a surprisingly small Fermi-surface in
underdoped cuprates, possibly resulting from Fermi-surface reconstruction due
to an order parameter that breaks translational symmetry of the crystal
lattice. A crucial issue concerns the doping extent of this state and its
relationship to the principal pseudogap and superconducting phases. We employ
pulsed magnetic field measurements on the cuprate HgBaCuO to
identify signatures of Fermi surface reconstruction from a sign change of the
Hall effect and a peak in the temperature-dependent planar resistivity. We
trace the termination of Fermi-surface reconstruction to two hole
concentrations where the superconducting upper critical fields are found to be
enhanced. One of these points is associated with the pseudogap end-point near
optimal doping. These results connect the Fermi-surface reconstruction to both
superconductivity and the pseudogap phenomena.Comment: 5 pages. 3 Figures. PNAS (2020
Quasiharmonic elastic constants corrected for deviatoric thermal stresses
The quasiharmonic approximation (QHA), in its simplest form also called the
statically constrained (SC) QHA, has been shown to be a straightforward method
to compute thermoelastic properties of crystals. Recently we showed that for
non-cubic solids SC-QHA calculations develop deviatoric thermal stresses at
high temperatures. Relaxation of these stresses leads to a series of
corrections to the free energy that may be taken to any desired order, up to
self-consistency. Here we show how to correct the elastic constants obtained
using the SC-QHA. We exemplify the procedure by correcting to first order the
elastic constants of MgSiO-perovskite and MgSiO-post-perovskite, the
major phases of the Earth's lower mantle. We show that this first order
correction is quite satisfactory for obtaining the aggregated elastic averages
of these minerals and their velocities in the lower mantle. This type of
correction is also shown to be applicable to experimental measurements of
elastic constants in situations where deviatoric stresses can develop, such as
in diamond anvil cells.Comment: 4 figures, 1 table, submitted to Phys. Rev. B, July 200
Domain wall mobility in nanowires: transverse versus vortex walls
The motion of domain walls in ferromagnetic, cylindrical nanowires is
investigated numerically by solving the Landau-Lifshitz-Gilbert equation for a
classical spin model in which energy contributions from exchange, crystalline
anisotropy, dipole-dipole interaction, and a driving magnetic field are
considered. Depending on the diameter, either transverse domain walls or vortex
walls are found. The transverse domain wall is observed for diameters smaller
than the exchange length of the given material. Here, the system behaves
effectively one-dimensional and the domain wall mobility agrees with a result
derived for a one-dimensional wall by Slonczewski. For low damping the domain
wall mobility decreases with decreasing damping constant. With increasing
diameter, a crossover to a vortex wall sets in which enhances the domain wall
mobility drastically. For a vortex wall the domain wall mobility is described
by the Walker-formula, with a domain wall width depending on the diameter of
the wire. The main difference is the dependence on damping: for a vortex wall
the domain wall mobility can be drastically increased for small values of the
damping constant up to a factor of .Comment: 5 pages, 6 figure
- …
