783 research outputs found

    A WARNING ABOUT USING PREDICTED VALUES TO ESTIMATE DESCRIPTIVE MEASURES

    Get PDF
    In a recent article in the Journal, Ogburn et al. highlighted the issues with using predicted values when estimating associations or effects. While the authors cautioned against using predicted values to estimate associations or effects, they noted that predictions can be useful for descriptive purposes. In this work, we highlight the issues with using individual-level predicted values to estimate population-level descriptive parameter

    Strange quarks and lattice QCD

    Full text link
    The last few years have seen a dramatic improvement in our knowledge of the strange form factors of the nucleon. With regard to the vector from factors the level of agreement between theory and experiment gives us considerable confidence in our ability to calculate with non-perturbative QCD. The calculation of the strange scalar form factor has moved significantly in the last two years, with the application of new techniques which yield values considerably smaller than believed for the past 20 years. These new values turn out to have important consequences for the detection of neutralinos, a favourite dark matter candidate. Finally, very recent lattice studies have resurrected interest in the famed H-dibaryon, with modern chiral extrapolation of lattice data suggesting that it may be only slightly unbound. We review some of the major sources of uncertainty in that chiral extrapolation.Comment: Invited talk at the Asia-Pacific few Body Conference, Seoul Kore

    Generating asymptotically plane wave spacetimes

    Get PDF
    In an attempt to study asymptotically plane wave spacetimes which admit an event horizon, we find solutions to vacuum Einstein's equations in arbitrary dimension which have a globally null Killing field and rotational symmetry. We show that while such solutions can be deformed to include ones which are asymptotically plane wave, they do not posses a regular event horizon. If we allow for additional matter, such as in supergravity theories, we show that it is possible to have extremal solutions with globally null Killing field, a regular horizon, and which, in addition, are asymptotically plane wave. In particular, we deform the extremal M2-brane solution in 11-dimensional supergravity so that it behaves asymptotically as a 10-dimensional vacuum plane wave times a real line.Comment: 23 pages, 1 eps figure; harvmac; v2:refs added; v3:minor comments adde

    Meta-Analysis and Sparse-Data Bias

    Get PDF
    Meta-analyses are undertaken to combine information from a set of studies, often in settings where some of the individual study-specific estimates are based on relatively small study samples. Finite sample bias may occur when maximum likelihood estimates of associations are obtained by fitting logistic regression models to sparse data sets. Here we show that combining information from small studies by undertaking a meta-analytical summary of logistic regression estimates can propagate such sparse-data bias. In simulations, we illustrate 2 challenges encountered in meta-analyses of logistic regression results in settings of sparse data: 1) bias in the summary meta-analytical result and 2) confidence interval coverage that can worsen rather than improve, in terms of being less than nominal, as the number of studies in the meta-analysis increases

    Different Modes of Retrovirus Restriction by Human APOBEC3A and APOBEC3G In Vivo

    Get PDF
    The apolipoprotein B editing complex 3 (A3) cytidine deaminases are among the most highly evolutionarily selected retroviral restriction factors, both in terms of gene copy number and sequence diversity. Primate genomes encode seven A3 genes, and while A3F and 3G are widely recognized as important in the restriction of HIV, the role of the other genes, particularly A3A, is not as clear. Indeed, since human cells can express multiple A3 genes, and because of the lack of an experimentally tractable model, it is difficult to dissect the individual contribution of each gene to virus restriction in vivo. To overcome this problem, we generated human A3A and A3G transgenic mice on a mouse A3 knockout background. Using these mice, we demonstrate that both A3A and A3G restrict infection by murine retroviruses but by different mechanisms: A3G was packaged into virions and caused extensive deamination of the retrovirus genomes while A3A was not packaged and instead restricted infection when expressed in target cells. Additionally, we show that a murine leukemia virus engineered to express HIV Vif overcame the A3G-mediated restriction, thereby creating a novel model for studying the interaction between these proteins. We have thus developed an in vivo system for understanding how human A3 proteins use different modes of restriction, as well as a means for testing therapies that disrupt HIV Vif-A3G interactions

    Pion Content of the Nucleon as seen in the NA51 Drell-Yan experiment

    Get PDF
    In a recent CERN Drell-Yan experiment the NA51 group found a strong asymmetry of uˉ\bar u and dˉ\bar d densities in the proton at x≃0.18x\simeq0.18. We interpret this result as a decisive confirmation of the pion-induced sea in the nucleon.Comment: 10 pages + 3 figures, Preprint KFA-IKP(TH)-1994-14 .tex file. After \enddocument a uu-encodeded Postscript file comprising the figures is appende

    Major ice‐sheet change in the Weddell Sector of West Antarctica over the last 5000 years

    Get PDF
    Until recently, little was known about the Weddell Sea sector of the West Antarctic Ice Sheet. In the last 10 years, a variety of expeditions and numerical modelling experiments have improved knowledge of its glaciology, glacial geology, and tectonic setting. Two of the sector's largest ice streams rest on a steep reverse‐sloping bed yet, despite being vulnerable to change, satellite observations show contemporary stability. There is clear evidence for major ice‐sheet reconfiguration in the last few thousand years, however. Knowing precisely how the ice sheet has changed in the past, and when, would allow us to better understand whether it is now at risk. Two competing hypotheses have been established for this glacial history. In one, the ice sheet retreated and thinned progressively from its Last Glacial Maximum position. Retreat stopped at, or very near, the present position in the Late Holocene. Alternatively, in the Late Holocene the ice sheet retreated significantly upstream of the present grounding line, and then advanced to the present location due to glacial isostatic adjustment, and ice‐shelf and ice rise buttressing. Both hypotheses point to data and theory in their support, yet neither has been unequivocally tested or falsified. Here, we review geophysical evidence to determine how each hypothesis has been formed, where there are inconsistencies in the respective glacial histories, how they may be tested or reconciled, and what new evidence is required to reach a common model for the Late Holocene ice sheet history of the Weddell Sea sector of West Antarctica

    Missing Outcome Data in Epidemiologic Studies

    Get PDF
    Missing data are pandemic and a central problem for epidemiology. Missing data reduce precision and can cause notable bias. There remain too few simple published examples detailing types of missing data and illustrating their possible impact on results. Here we take an example randomized trial that was not subject to missing data and induce missing data to illustrate 4 scenarios in which outcomes are 1) missing completely at random, 2) missing at random with positivity, 3) missing at random without positivity, and 4) missing not at random. We demonstrate that accounting for missing data is generally a better strategy than ignoring missing data, which unfortunately remains a standard approach in epidemiology

    Phase diagram for a class of spin-half Heisenberg models interpolating between the square-lattice, the triangular-lattice and the linear chain limits

    Full text link
    We study the spin-half Heisenberg models on an anisotropic two-dimensional lattice which interpolates between the square-lattice at one end, a set of decoupled spin-chains on the other end, and the triangular-lattice Heisenberg model in between. By series expansions around two different dimer ground states and around various commensurate and incommensurate magnetically ordered states, we establish the phase diagram for this model of a frustrated antiferromagnet. We find a particularly rich phase diagram due to the interplay of magnetic frustration, quantum fluctuations and varying dimensionality. There is a large region of the usual 2-sublattice Ne\'el phase, a 3-sublattice phase for the triangular-lattice model, a region of incommensurate magnetic order around the triangular-lattice model, and regions in parameter space where there is no magnetic order. We find that the incommensurate ordering wavevector is in general altered from its classical value by quantum fluctuations. The regime of weakly coupled chains is particularly interesting and appears to be nearly critical.Comment: RevTeX, 15 figure

    Hamiltonian 2-forms in Kahler geometry, III Extremal metrics and stability

    Full text link
    This paper concerns the explicit construction of extremal Kaehler metrics on total spaces of projective bundles, which have been studied in many places. We present a unified approach, motivated by the theory of hamiltonian 2-forms (as introduced and studied in previous papers in the series) but this paper is largely independent of that theory. We obtain a characterization, on a large family of projective bundles, of those `admissible' Kaehler classes (i.e., the ones compatible with the bundle structure in a way we make precise) which contain an extremal Kaehler metric. In many cases, such as on geometrically ruled surfaces, every Kaehler class is admissible. In particular, our results complete the classification of extremal Kaehler metrics on geometrically ruled surfaces, answering several long-standing questions. We also find that our characterization agrees with a notion of K-stability for admissible Kaehler classes. Our examples and nonexistence results therefore provide a fertile testing ground for the rapidly developing theory of stability for projective varieties, and we discuss some of the ramifications. In particular we obtain examples of projective varieties which are destabilized by a non-algebraic degeneration.Comment: 40 pages, sequel to math.DG/0401320 and math.DG/0202280, but largely self-contained; partially replaces and extends math.DG/050151
    • 

    corecore