
A WARNING ABOUT USING PREDICTED VALUES TO ESTIMATE DESCRIPTIVE MEASURES

In a recent article in the Journal, Ogburn et al. (1) high-
lighted the issues with using predicted values when esti-
mating associations or effects. While the authors cautioned
against using predicted values to estimate associations
or effects, they noted that predictions can be useful for
descriptive purposes. In this work, we highlight the issues
with using individual-level predicted values to estimate
population-level descriptive parameters.

Epidemiologists are often interested in describing some
variable of interest Y in a population. Commonly used
descriptive parameters are the mean E(Y) and the proportion
of the population in which Y falls above or below a threshold
t (i.e., the cumulative distribution function (CDF), FY(t) =
P(Y ≤ t), or its complement). Sometimes we are not able
to directly measure Yi (where i indexes n individuals in
the population) but instead have an individual-level predic-
tion of Yi obtained from a model conditional on covariates
g (Zi) = V̂i, which estimates the conditional expectation
Vi = E (Y|Zi). For simplicity of notation, we suppress the
circumflex and subscript i hereafter. When we use such a
model, all individuals with Z = z are given the same V
even though the true Y values vary, implying that Var(V) <
Var(Y). If we use V in place of Y to estimate descriptive
parameters, descriptive parameters that are linear functions
are unbiased but descriptive parameters that are nonlinear
functions may be biased (see the Web Appendix, available
at https://doi.org/10.1093/aje/kwad020). For example, the
mean value, a linear function, is unbiased (i.e., E(V) =
E(E(Y|Z)) = E(Y)). However, the standard error of the
mean, a nonlinear function, is biased. Thus, we will not
be able to obtain a valid confidence interval (CI) for the
mean using only V . The CDF is also a nonlinear function,
so FV(t) �= FY(t). Intuitively, because Var(V) < Var(Y),
the 90th percentile, for example, of V will underestimate the
90th percentile of Y .

To ground ideas, say we are interested in describing
gestational age at birth in a population. Common metrics are
the proportions of infants born preterm and postterm (i.e.,
CDF and 1 − CDF for gestational age at birth evaluated at
37 weeks and 42 weeks, respectively). Gestational age often
cannot be determined directly but is generated prenatally
from a model (i.e., dating equation) that converts anatomical
size, measured via ultrasound, to gestational age. The equa-
tion gives a single, predicted gestational age to all fetuses
of the same size, even though there is biological variation
in growth. This implies that the variance of the predicted
gestational ages is smaller than the true gestational ages.
Consequently, the proportions preterm or postterm estimated
using predicted age are expected to be biased downward. In
this work, we illustrate the issue with estimating descriptive
parameters using V instead of Y in a simple simulation using
realistic inputs. We also introduce an approach to reduce bias

in estimation using V . Throughout, we use estimation of the
CDF of gestational age at birth as our example.

ISSUES WITH NAIVELY USING PREDICTIONS

Simulation design

We conducted a simple simulation to illustrate the issues
with estimating the CDF of gestational age at birth when
gestational age is a predicted value calculated by a dating
equation (software code is available on GitHub (2)). To
inform this simulation, we used the equations from the Inter-
national Fetal and Newborn Growth Consortium for the 21st
Century (INTERGROWTH-21st)—one for early pregnancy
using crown-rump length and one for late pregnancy using
femur length and head circumference (3, 4). In addition
to equations for the predicted gestational age given size,
INTERGROWTH-21st provides equations for the standard
deviation of gestational age given size. Gestational age dat-
ing typically occurs at the first prenatal care visit (gestational
age at first visit plus time elapsed equals gestational age at
birth), and the standard deviation increases with predicted
gestational age (i.e., there is heteroskedasticity; see Web
Figure 1). The standard deviation varies from 2.7 days at 8.4
weeks to 6.1 days at 26.0 weeks.

In our simulation, we drew conditional expectations of
gestational age at birth given size (V), from a Weibull
distribution with parameters (shape 31.619, scale 39.729)
set so that the observed frequencies of preterm and postterm
birth were 10% and 0.03%, respectively, as seen in the US
population in 2020 (5). Next, we drew the true gestational
age at birth, Y , from a normal distribution centered on V ,
Y ∼ N(V , σ). We set σ to 2.7 days in one scenario and 6.1
days in a second scenario, reflecting the smallest and largest
standard deviations provided by INTERGROWTH-21st up
to 26 weeks. We simulated data for 5,000 cohorts each with
n = 2,000.

We derived the true frequencies of preterm and postterm
birth using the sample proportions from the combined pop-
ulation of all 5,000 simulated cohorts (10 million). Then,
within each simulated cohort, we estimated the proportions
of infants born preterm and postterm using Y and V . Across
the 5,000 cohorts, we calculated the average of the propor-
tions preterm and postterm using Y and V and the bias, the
empirical standard error, and 95% CI coverage for those
proportions (6).

Results

As expected, the mean values of Y and V were equal
(39.0 weeks), and the standard deviation of Y was larger
than that of V (e.g., when σ = 6.1 days, the standard devi-
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Figure 1. Cumulative incidence of birth in the simulated data using the predicted gestational age at birth (“observed” curve) and true gestational
age at birth when the observed distribution mimics estimates from the United States. Dashed vertical lines mark cutoffs for preterm and postterm
birth, respectively. SD, standard deviation.

appropriate standard error estimates when σi is known (Web
Table 1).

We implemented this approach in an applied example. We
estimated the proportions of infants born preterm and post-
term using data from the Zambian Preterm Birth Prevention
Study (ZAPPS), an observational prospective cohort study
of pregnant people recruited at prenatal care initiation in
Lusaka, Zambia, in 2015–2017 (8, 9). Our analysis included
1,169 people with a singleton pregnancy whose gestational
age was predicted using INTERGROWTH-21st equations.
Using the predicted gestational age, V , the estimated pro-
portion of infants born preterm was 13.6% (95% CI: 11.6,
15.6) and the proportion born postterm was 2.0% (95%
CI: 1.2, 2.8). To account for the use of predictions, we
multiply imputed values for Y where σi was obtained from
the INTERGROWTH-21st equations for the standard devi-
ation. Using the imputed values, the estimated proportion
preterm was 14.6% (95% CI: 12.6, 16.6) and the proportion
postterm was 3.0% (95% CI: 2.1, 4.0). Web Figure 2 shows
the cumulative incidence of birth using the predicted and
imputed gestational age.

DISCUSSION

We have demonstrated that using predicted values of a
variable can bias descriptive parameters commonly used
in epidemiology. Our illustration specifically showed that
naively using predicted values underestimates the proportion
of a population in the tails of a distribution. In our simulation,

ations were 1.8 and 1.5, respectively). Figure 1 plots the 
cumulative incidence of births by gestational age. There was 
some separation in the curves such that the proportions of 
infants born preterm and postterm are underestimated when 
using predicted age, V . Table 1 includes estimates of the 
proportions of infants born preterm and postterm, averaged 
across the 5,000 simulated cohorts. The observed proportion 
of infants born preterm, 10%, was biased downward between 
0.4 and 2.3 percentage points, depending on the value of σ. 
The observed proportion of infants born postterm, 0.3%, had 
a similar absolute amount of downward bias. With σ set at 
6.1 days, the true proportion of infants born postterm was 
more than 9 times the observed proportion. The empirical 
standard error was smaller when using V than when using 
Y , and there was poor 95% CI coverage when using V . 
Coverage was 89% and 8% for preterm birth and 15% and 
0% for postterm birth.

VALIDLY USING PREDICTIONS

Multiple imputation can be used to validly estimate 
descriptive parameters using predictions V in place of Y . We  
impute values for Y multiple times by repeatedly drawing 
values for each individual from the distribution N(Vi, σi). 
Subsequently, the descriptive parameter is estimated in each 
imputed data set and then the estimates from each imputed 
data set are combined using Rubin’s rule (7). The approach 
requires σi, the standard deviation of Yi | Zi = z. Results 
from a simulation show that the approach is unbiased with



Table 1. Proportions of Infants Born Preterm and Postterm Using Predicted Gestational Age at Birth, V, or True
Gestational Age at Birth, Y (Average of Estimates From 5,000 Simulated Cohorts of n = 2,000)

Bias

Parameter
Proportion of
Infants Born

Absolute Relativea
ESE

95% CI
Coverage,
proportion

Preterm

σ = 2.7 days

V 0.100 −0.004 −0.04 0.0066 0.89

Y 0.104 0.0 0.0 0.0068 0.95

σ = 6.1 days

V 0.100 −0.023 −0.19 0.0066 0.08

Y 0.123 0.0 0.0 0.0073 0.95

Postterm

σ = 2.7 days

V 0.003 −0.004 −0.57 0.0012 0.15

Y 0.007 0.0 0.0 0.0019 0.93

σ = 6.1 days

V 0.003 −0.024 −0.89 0.0012 0.00

Y 0.027 0.0 0.0 0.0037 0.94

Abbreviations: CI, confidence interval; ESE, empirical standard error.
a Absolute bias/truth.

which mimicked the observed US distribution of gesta-
tional age at birth and used realistic inputs for the standard
deviation provided by INTERGROWTH-21st, we found that
the true proportions of infants born preterm and postterm in
the United States may be as high as 12.3% and 2.7% (com-
pared with the 10% and 0.03% observed), respectively. Our
simulations also showed that the standard error estimated
using predicted values is inappropriately small. The combi-
nation of bias and a too-small standard error results in poor
CI coverage, meaning that estimated intervals rarely con-
tained the true value. Our illustration focused on the CDF;
however, there may also be bias and poor coverage in any
descriptive parameter that is a nonlinear function. Addition-
ally, even though descriptive parameters that are linear func-
tions, such as the mean, would not be biased, standard errors
of the mean would be biased, resulting in misleading CIs.

We demonstrated an approach for estimating descriptive
parameters using predicted values. The approach leverages
resampling that treats the prediction as a mismeasured ver-
sion of Y . In our example application, we assumed that Y |V
was normally distributed; however, assuming a parametric
distribution is not necessary. When data used to fit the pre-
diction model (i.e., training data) are available, this approach
could be made nonparametric by, for example, resampling
from the residuals of the fitted prediction model. Such an
approach has been previously proposed (10), where the issue
of using predicted values was described as Berkson measure-
ment error (11, 12). The approach also has similarities to
multiple overimputation (13).

Importantly, our approach requires a measure of the stan-
dard deviation of Yi |Zi. In our example application, we did

not have training data, so we used equations for the stan-
dard deviation available from INTERGROWTH-21st. We
made the strong assumption that these equations were trans-
portable to our study population. If this assumption does
not hold (i.e., there are covariates that are related to the
standard deviation and the distributions of these covariates
differ between our study population and the population
in which these equations were fit), then our results may
be biased. In general, obtaining measures of the standard
deviation is challenging. A validation sample could be used
if measuring Y is feasible. If no measure for the standard
deviation is available, a range of plausible values could
be examined to provide information on the direction and
potential magnitude of bias.

In general, we must be cautious when using predicted
values. It can be easy to overlook that we are using pre-
dictions instead of Y , such as in the case of gestational age.
Predictive approaches such as machine learning, which are
increasingly used in epidemiology and public health (14),
yield predictions, rather than Y . It is important to remember
that we cannot naively replace an unmeasured variable with
predicted values to estimate our parameters of interest, even
descriptive ones.
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