36 research outputs found

    An investigation of VLF transmitter wave power in the inner radiation belt and slot region

    Get PDF
    Signals from manā€made Very Low Frequency (VLF) transmitters, used for communications with submarines, can leak into space and contribute to the dynamics of energetic electrons in the inner radiation belt and slot region. In this study we use āˆ¼5 years of plasma wave data from the Van Allen Probe A satellite to construct new models of the observed wave power from VLF transmitters both as a function of L* and magnetic local time and geographic location. Average power peaks primarily on the nightside of the Earth for the VLF transmitters at low geographic latitudes. At higher latitudes the peak average power extends further in magnetic local time due to more extensive periods of nighttime in the winter months. Nighttime power is typically orders of magnitude more than that observed near noon, implying that loss rates from a given VLF transmitter will also maximize in this region. The observed power from any given VLF transmitter is tightly confined in longitude, with the nightside peak power typically falling by a factor of 10 within 10Ā° longitude of the location of the peak signal. We show that the total average wave power from all VLF transmitters lies in the range 3ā€“9 pT2 in the region 1.3<L*<3.0, with approximately 50% of this power emanating from three VLF transmitters, NWC, NAA, and DHO38

    Effects of VLF transmitter waves on the inner belt and slot region

    Get PDF
    Signals from very low frequency (VLF) transmitters can leak from the Earthā€ionosphere wave guide into the inner magnetosphere, where they propagate in the whistler mode and contribute to electron dynamics in the inner radiation belt and slot region. Observations show that the waves from each VLF transmitter are highly localized, peaking on the nightside in the vicinity of the transmitter. In this study we use āˆ¼5 years of Van Allen Probes observations to construct global statistical models of the bounceā€averaged pitch angle diffusion coefficients for each individual VLF transmitter, as a function of L*, magnetic local time (MLT), and geographic longitude. We construct a 1ā€D pitch angle diffusion model with implicit longitude and MLT dependence to show that VLF transmitter waves weakly scatter electrons into the drift loss cone. We find that global averages of the wave power, determined by averaging the wave power over MLT and longitude, capture the longā€term dynamics of the loss process, despite the highly localized nature of the waves in space. We use our new model to assess the role of VLF transmitter waves, hiss waves, and Coulomb collisions on electron loss in the inner radiation belt and slot region. At moderate relativistic energies, Eāˆ¼500 keV, waves from VLF transmitters reduce electron lifetimes by an order of magnitude or more, down to the order of 200 days near the outer edge of the inner radiation belt. However, VLF transmitter waves are ineffective at removing multiā€“megaelectron volt electrons from either the inner radiation belt or slot region

    Particle swarming of sensor correction filters

    Get PDF
    Reducing the impact of seismic activity on the motion of suspended optics is essential for the operation of ground-based gravitational wave detectors. During periods of increased seismic activity, low-frequency ground translation and tilt cause the Advanced LIGO observatories to lose 'lock', reducing their duty cycles. This paper applies modern global-optimisation algorithms to aid in the design of the 'sensor correction' filter, used in the control of the active platforms. It is shown that a particle swarm algorithm that minimises a cost-function approximating the differential root mean squared velocity between platforms can produce control filters that perform better across most frequencies in the control bandwidth than those currently installed. These tests were conducted using training data from the LIGO Hanford Observatory seismic instruments and simulations of the Horizontal Access Module Internal Seismic Isolation platforms. These results show that new methods of producing control filters are ready for use at LIGO. The filters were implemented at LIGO's Hanford Observatory, and use the resulting data to refine the cost function. Ā© 2020 IOP Publishing Ltd Printed in the U

    Electron diffusion by magnetosonic waves in the Earthā€™s radiation belts

    Get PDF
    We conduct a global survey of magnetosonic waves and compute the associated bounce and drift averaged diffusion coefficients, taking into account co-located measurements of fpe/fce, to assess the role of magnetosonic waves in radiation belt dynamics. The average magnetosonic wave intensities increase with increasing geomagnetic activity and decreasing relative frequency with the majority of the wave power in the range fcp < f < 0.3fLHR during active conditions. In the region 4.0 ā‰¤ L* ā‰¤ 5.0, the bounce and drift averaged energy diffusion rates due to magnetosonic waves never exceed those due to whistler mode chorus, suggesting that whistler mode chorus is the dominant mode for electron energisation to relativistic energies in this region. Further in, in the region 2.0 ā‰¤ L* ā‰¤ 3.5, the bounce and drift averaged pitch angle diffusion rates due to magnetosonic waves can exceed those due to plasmaspheric hiss and very low frequency (VLF) transmitters over energy-dependent ranges of intermediate pitch angles. We compute electron lifetimes by solving the 1D pitch angle diffusion equation including the effects of plasmaspheric hiss, VLF transmitters and magnetosonic waves. We find that magnetosonic waves can have a significant effect on electron loss timescales in the slot region reducing the loss timescales during active times from 5.6 to 1.5 days for 500 keV electrons at L* = 2.5 and from 140.4 days to 35.7 days for 1 MeV electrons at L* = 2.0

    New Chorus Diffusion Coefficients for Radiation Belt Modeling

    Get PDF
    Relativistic electrons in the Earth's outer radiation belt are a significant space weather hazard. The belt, which lies at altitudes from 13,000 to 40,000 km in the Earth's magnetic equatorial plane, is highly dynamic with fluxes of relativistic electrons varying by orders of magnitude on timescales ranging from minutes to months. This variability is controlled by a variety of transport, acceleration and loss processes. One particularly important process is the interaction with a plasma wave, known as chorus. These waves play a significant role in both the acceleration and loss of energetic electrons. In this study we derive new diffusion rates for these interactions and find that the rates can exceed those in our earlier models by up to a factor of 10. The new diffusion rates will be incorporated into the British Antarctic Survey Radiation Belt Model to produce better space weather models and forecasts

    Using MEPED observations to infer plasma density and chorus intensity in the radiation belts

    Get PDF
    Efforts to model and predict energetic electron fluxes in the radiation belts are highly sensitive to local wave-particle interactions. In this study, we use multi-point measurements of precipitating and trapped electron fluxes to investigate the dynamic variation of chorus wave-particle interactions during the 17 March 2013 storm. Quasilinear theory characterizes the chorus wave-particle interaction as a diffusive process, with the diffusion coefficients depending on the particle energy and pitch angle, as well as the background plasma parameters such as the wave intensity and plasma density. These plasma parameters in the radiation belts are spatially localized and time-varying, so we construct event-specific diffusion coefficients using MEPED (onboard POES/MetOp) measurements of electron fluxes at low Earth orbit. This new method provides realistic diffusion coefficients for chorus waves that account for changes in the wave intensity, the plasma density, and the magnetic field strength in the outer radiation belt. We show that the inferred chorus intensity is significantly lower than previous estimates that use MEPED observations since the same amount of increased precipitation by 30ā€“300 keV electrons can be explained by a change in the plasma density. This technique therefore allows for us to create time varying, global maps of the plasma-gyrofrequency ratio (fpe/fce), and therefore plasma density, in the outer radiation belts using the MEPED measurements. The global density estimates compare reasonably well to in situ density measurements from RBSP-B

    Risk factors for postoperative complications after adrenalectomy for phaeochromocytoma: multicentre cohort study

    Get PDF
    Background: To determine the incidence and risk factors for postoperative complications and prolonged hospital stay after adrenalectomy for phaeochromocytoma. Methods: Demographics, perioperative outcomes and complications were evaluated for consecutive patients who underwent adrenalectomy for phaeochromocytoma from 2012 to 2020 in nine high-volume UK centres. Odds ratios were calculated using multivariable models. The primary outcome was postoperative complications according to the Clavienā€“Ā­Ā­Dindo classification and secondary outcome was duration of hospital stay. Results: Data were available for 406 patients (female n = 221, 54.4 per cent). Two patients (0.5 per cent) had perioperative death, whilst 148 complications were recorded in 109 (26.8 per cent) patients. On adjusted analysis, the age-adjusted Charlson Co-morbidity Index ā‰„3 (OR 8.09, 95 per cent c.i. 2.31 to 29.63, P = 0.001), laparoscopic converted to open (OR 10.34, 95 per cent c.i. 3.24 to 36.23,

    Temporal variability of quasilinear pitch-angle diffusion

    Get PDF
    Kinetic wave-particle interactions in Earth's outer radiation belt energize and scatter high-energy electrons, playing an important role in the dynamic variation of the extent and intensity of the outer belt. It is possible to model the effects of wave-particle interactions across long length and time scales using quasilinear theory, leading to a Fokker-Planck equation to describe the effects of the waves on the high energy electrons. This powerful theory renders the efficacy of the wave-particle interaction in a diffusion coefficient that varies with energy or momentum and pitch angle. In this article we determine how the Fokker-Planck equation responds to the temporal variation of the quasilinear diffusion coefficient in the case of pitch-angle diffusion due to plasmaspheric hiss. Guided by in-situ observations of how hiss wave activity and local number density change in time, we use stochastic parameterisation to describe the temporal evolution of hiss diffusion coefficients in ensemble numerical experiments. These experiments are informed by observations from three different example locations in near-Earth space, and a comparison of the results indicates that local differences in the distribution of diffusion coefficients can result in material differences to the ensemble solutions. We demonstrate that ensemble solutions of the Fokker-Planck equation depend both upon the timescale of variability (varied between minutes and hours), and the shape of the distribution of diffusion coefficients. The uncertainty in the ensemble results increases for longer timescales of variability, and when the average diffusion coefficient at that location is high. We discuss time and length scales of wave-particle interactions relative to the drift velocity of high-energy electrons and confirm that arithmetic drift-averaging is can be appropriate in some cases. In other cases, further parameterisation is required to reduce uncertainty in the solution. We demonstrate that in some locations, rare but large values of the diffusion coefficient occur during periods of relatively low number density. Ensemble solutions are sensitive to the presence of these rare values, supporting the need for accurate cold plasma density models in radiation belt descriptions

    Common and rare variant association analyses in amyotrophic lateral sclerosis identify 15 risk loci with distinct genetic architectures and neuron-specific biology

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with a lifetime risk of one in 350 people and an unmet need for disease-modifying therapies. We conducted a cross-ancestry genome-wide association study (GWAS) including 29,612 patients with ALS and 122,656 controls, which identified 15 risk loci. When combined with 8,953 individuals with whole-genome sequencing (6,538 patients, 2,415 controls) and a large cortex-derived expression quantitative trait locus (eQTL) dataset (MetaBrain), analyses revealed locus-specific genetic architectures in which we prioritized genes either through rare variants, short tandem repeats or regulatory effects. ALS-associated risk loci were shared with multiple traits within the neurodegenerative spectrum but with distinct enrichment patterns across brain regions and cell types. Of the environmental and lifestyle risk factors obtained from the literature, Mendelian randomization analyses indicated a causal role for high cholesterol levels. The combination of all ALS-associated signals reveals a role for perturbations in vesicle-mediated transport and autophagy and provides evidence for cell-autonomous disease initiation in glutamatergic neurons

    Response to correspondence on Reproducibility of CRISPR-Cas9 Methods for Generation of Conditional Mouse Alleles: A Multi-Center Evaluation

    Get PDF
    corecore