38,746 research outputs found

    NLO Leptoquark Production and Decay: The Narrow-Width Approximation and Beyond

    Get PDF
    We study the leptoquark model of Buchm\"uller, R\"uckl and Wyler, focusing on a particular type of scalar (R2R_2) and vector (U1U_1) leptoquark. The primary aim is to perform the calculations for leptoquark production and decay at next-to-leading order (NLO) to establish the importance of the NLO contributions and, in particular, to determine how effective the narrow-width-approximation (NWA) is at NLO. For both the scalar and vector leptoquarks it is found that the NLO contributions are large, with the larger corrections occurring for the case vector leptoquarks. For the scalar leptoquark it is found that the NWA provides a good approximation for determining the resonant peak, however the NWA is not as effective for the vector leptoquark. For both the scalar and vector leptoquarks there are large contributions away from the resonant peak, which are missing from the NWA results, and these make a significant difference to the total cross-section.Comment: 22 pages, 17 figure

    Equidistributing grids

    Get PDF

    Sensitivity of the photo-physical properties of organometallic complexes to small chemical changes

    Full text link
    We investigate an effective model Hamiltonian for organometallic complexes that are widely used in optoelectronic devices. The two most important parameters in the model are JJ, the effective exchange interaction between the π\pi and π∗\pi^* orbitals of the ligands, and ϵ∗\epsilon^*, the renormalized energy gap between the highest occupied orbitals on the metal and on the ligand. We find that the degree of metal-to-ligand charge transfer (MLCT) character of the lowest triplet state is strongly dependent on the ratio ϵ∗/J\epsilon^*/J. ϵ∗\epsilon^* is purely a property of the complex and can be changed significantly by even small variations in the complex's chemistry, such as replacing substituents on the ligands. We find that that small changes in ϵ∗/J\epsilon^*/J can cause large changes in the properties of the complex, including the lifetime of the triplet state and the probability of injected charges (electrons and holes) forming triplet excitations. These results give some insight into the observed large changes in the photophysical properties of organometallic complexes caused by small changes in the ligands.Comment: Accepted for publication in J. Chem. Phys. 14 pages, 9 figures, Supplementary Info: 15 pages, 17 figure

    Beef Cattle Instance Segmentation Using Fully Convolutional Neural Network

    Get PDF
    In this paper we present a novel instance segmentation algorithm that extends a fully convolutional network to learn to label objects separately without prediction of regions of interest. We trained the new algorithm on a challenging CCTV recording of beef cattle, as well as benchmark MS COCO and Pascal VOC datasets. Extensive experimentation showed that our approach outperforms the state-of-the-art solutions by up to 8% on our data

    Evidence for gapped spin-wave excitations in the frustrated Gd2Sn2O7 pyrochlore antiferromagnet from low-temperature specific heat measurements

    Full text link
    We have measured the low-temperature specific heat of the geometrically frustrated pyrochlore Heisenberg antiferromagnet Gd2Sn2O7 in zero magnetic field. The specific heat is found to drop exponentially below approximately 350 mK. This provides evidence for a gapped spin-wave spectrum due to an anisotropy resulting from single ion effects and long-range dipolar interactions. The data are well fitted by linear spin-wave theory, ruling out unconventional low energy magnetic excitations in this system, and allowing a determination of the pertinent exchange interactions in this material

    The weight for random quark masses

    Get PDF
    In theories in which the parameters of the low energy theory are not unique, perhaps having different values in different domains of the universe as is possible in some inflationary models, the fermion masses would be distributed with respect to some weight. In such a situation the specifics of the fermion masses do not have a unique explanation, yet the weight provides the visible remnant of the structure of the underlying theory. This paper introduces this concept of a weight for the distribution of masses and provides a quantitative estimate of it from the observed quarks and leptons. The weight favors light quark masses and appears roughly scale invariant (rho ~ 1/m). Some relevant issues, such as the running of the weight with scale and the possible effects of anthropic constraints, are also discussed.Comment: 35pages, 19 figure

    Flavor Delta(54) in SU(5) SUSY Model

    Full text link
    We design a supersymmetric SU (5) GUT model using \Delta (54), a finite non-abelian subgroup of SU (3)f . Heavy right handed neutrinos are introduced which transform as three-dimensional repre-sentation of our chosen family group. The model successfully reproduces the mass hierarchical mass structures of the Standard Model, and the CKM mixing matrix. It then provides predictions for the light neutrino with a normal hierarchy and masses such that m{\nu},1 \approx 5\times10-3 eV, m{\nu}, 2 \approx 1\times 10-2 eV, and m{\nu},3 \approx 5 \times 10-2 eV. We also provide predictions for masses of the heavy neutrinos, and correc- tions to the tri-bimaximal matrix that fit within experimental limits, e.g. a reactor angle of -7.31o. A simple modification to our model is introduced at the end and is shown to also produce predictions that fall well within those limits.Comment: 22 page
    • …
    corecore