-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by University of Dundee Online Publications

JERSI Ty
\\,‘?\-\ )()

OPEN ACCESS

DUNDEE

University of Dundee

Equidistributing grids
Higham, D. J.; Ross, A. B.; Griffiths, David

Publication date:
2001

Link to publication in Discovery Research Portal

Citation for published version (APA):

Higham, D. J., Ross, A. B., & Griffiths, D. (2001). Equidistributing grids. (Technical report; No. NA/198).
Department of Mathematics, University of Dundee.

General rights
Copyright and moral rights for the publications made accessible in Discovery Research Portal are retained by the authors and/or other

copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with
these rights.

« Users may download and print one copy of any publication from Discovery Research Portal for the purpose of private study or research.
« You may not further distribute the material or use it for any profit-making activity or commercial gain.
« You may freely distribute the URL identifying the publication in the public portal.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 19. Mar. 2016


https://core.ac.uk/display/20446275?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://discovery.dundee.ac.uk/portal/en/research/equidistributing-grids(fa86a9e0-6be0-4970-b236-d288103fe5fe).html

Equidistributing Grids*

David F. Griffiths' Desmond J. Higham!  Andrew B. Ross?

January, 2001

Abstract

Equidistribution algorithms are designed to generate a grid in conjunc-
tion with a numerical solution. The grid is thus adapted to the nature
of the solution. With this approach it is feasible to resolve features such
as sharp fronts and boundary layers with far fewer grid points than a
uniform spacing would dictate. In this work, we analyze equidistribu-
tion algorithms from the literature on a simple, one-dimensional, steady,
linear, convection-diffusion equation with central or upwind finite differ-
encing. Here, the small diffusion parameter, €, induces an O(e) boundary
layer. A novel feature of our analysis is that no simplifying assumptions
are made—the nonlinear algebraic system of equations arising in practice
from the finite difference and equidistribution equations is studied directly.
For equidistribution based on the first derivative of the solution, we give
exact formulas for the grids. For an alternative, smoothed, first derivative
algorithm, we find asymptotic (in €) formulas. In this case we show in
particular that upwind differences cannot lead to e-uniform convergence,
although, depending on the choice of method parameters, this lack of uni-
formity may not be observable unless € is extremely small. We explain
how this result contrasts with previously published numerical and analyt-
ical work. For an equidistribution algorithm based on parametrized arc
length, we construct solutions that satisfy the finite difference and equidis-
tribution equations to leading order in ¢, and demonstrate numerically that
these approximate solutions are relevant.
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1 Introduction

Equidistribution is an intuitively appealing approach for the numerical solution
of differential equations with sharp solutions. We refer to [4, 6] for a range of
references in this area. Although effective in practice, especially for problems
in one space dimension, equidistribution schemes are not yet supported by a
rigorous convergence theory. In this work we analyze popular schemes on a simple
test problem. A similar approach is taken in [2, 4, 5], but our analysis has the
advantage of dealing with the full algebraic system that determines the numerical
solution and the grid—we do not require simplifying assumptions that lead to an
analytic formula for the grid. We prove three types of result. In section 2, for the
simplest first-derivative based equidistribution algorithm, we find exact formulas
for the grid. A more general, smoothed, first-derivative algorithm is analyzed in
section 3. Here, we are able to derive asymptotic formulas for the grid location. In
section 4 we study an arc length based equidistribution algorithm and construct
approximate solutions to the resulting nonlinear system. Our main conclusions
are summarized in section 5. In the remainder of this section we introduce the
algorithms.
We consider the one-dimensional, linear, steady problem

Uy = €Uz, 0< 2 <1, (1)

where ¢ > 0 is a small parameter, subject to the boundary conditions

u(0) =0, wu(l)=1. (2)

The exact solution
_ erle — 1 3
u(r) = (3)

is monotonic, with an O(e) boundary layer at = = 1; see Figure 1.

To apply a finite-difference method to (1)—(2), we require grid points {z;},,
with 0 = 2p < 71 < 22 < - < zy = 1. We let U; denote the numerical
approximation to u(z;) (with Uy = 0 and Uy = 1) and introduce h; := z; —
z;_1 for the grid spacings. We also introduce vectors h = [hy, hy, ..., hy]|" and
U = [Uy,Us,...,Uy_1]". We discretize the diffusion term in (1) using central
differences:

2 (Uj.H—Uj Uj—Uj_1> . (4)
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Figure 1: Solution to (1)—(2) for e = 1072

For the convection term we consider three different schemes:

" ‘ - Ujy1 —Uj_y 5)
1 Uj_|_1—Uj Uj—Uj_l
T |T=x; ~ = 9 6
s o 2( b ©
U, —U;_;
e o

We refer to (5) and (6) as type I and type II central differences, respectively.
The scheme (7) is known as an upwind difference. Each finite difference scheme
produces a tridiagonal linear system A(h)U — b(h) = 0 with

[ b, i [ 0 ]
Q9 b2 Co 0
az b3 c3
A= and b= , (8)
CN—-2 0
B an—1 by-1 | | —cn-1

where for type I differencing we have

2e 1 1 2e
a; = — +1, b':—26( —i——), c; = -1, 9
Tk ! hivi by T by )

for type II differencing we have

1 ( 4e N 1) b 1 ( 4e 1)
;= — | —— , = —a;—cCj, Cj= -1,
J Qh] hj —+ h]‘+1 J J J J 2hj+1 h]‘ + hj_|_1

and for upwinding we have

2 ; ; 1 1 ; ; 2
o2 o (U1 gl 2%
h; h; hjpr by



The idea behind equidistribution is to generate the grid along with the nu-
merical solution. A process for finding the grid spacings can be based on the
constraints

1/m

= h,

1/m

Uinn — Uj
hj

hj1 % , 1<j<N-1, (12)
j

where m > 1 is a fixed integer. Here, the interval length h; is weighted by a
finite difference approximation to the first derivative—we require h; to be small
if the first derivative approximation is relatively large. Choosing m > 1 makes
the effect less dramatic. We refer to (12) as a smoothed first derivative (SFD)
strategy. To make zny = 1 we require the extra constraint

N
» hy=1 (13)
j=1

The grid equations (12)—(13) can be written L(h, U)h = e, where

[ fi —f ] [ 0]
fo —fs 0
L(h,U) s ff b and e=| ' (14)
fv—1 =[N 0
11 1 1 1 1| 1

with f; = |(U; — U;_1)/hj|"/™. Overall, the finite difference and grid equations
produce a nonlinear algebraic system of 2N — 1 equations in the 2N — 1 un-
knowns {h;}, and {Uj};-vz_ll. For convenience, we write the nonlinear system as
G(h,U) = 0, where

— | A(h)U —b(h)
G(h,U) := [ L(h,Uh—e |’ (15)
so G : RY x RV s R2V-1 Of course, we require positive grid spacings, so
(h, U) satisfying G(h, U) = 0 will be regarded as a valid solution only if ~; > 0
forall1 <j < N.

As an alternative to the SFD constraints (12), we also consider

2 2
hisi\/1—a+a Y = U; = hj\[1—a+a Yz Ui} << N,
hj h;

(16)
where o € [0,1] is a fixed parameter. We refer to (16) as a generalized arc
length (GAL) strategy, since for & = 1/2 it corresponds to equidistributing an
approximation to the solution arc length. Using this strategy in place of (12) we
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have f; = \/1 — a+ a([U; — Uj_1]/h;))? in (14). Note that choosing o = 0 gives
a uniform grid and o = 1 corresponds to SFD (12) with m = 1.

We remark that throughout this work we consider the parameters N, m and
« to be fixed and focus on the case where € is small.

In [4] the upwind finite difference scheme with SFD was analyzed on a problem
class that includes (1). In order to establish e-uniform convergence, the authors
inserted the exact solution into the grid equations and hence obtained an analyt-
ical expression for a grid. This grid, of course, is only an approximation to the
one that arises from the full nonlinear system and is independent of the finite
difference formula used to solve the differential equation. This idealized analysis
showed e-uniform convergence for sufficiently large m, and this was extended to
m > 2 in [2]. A similar analysis for GAL, based on an idealized grid, appears in
[5]. Our approach is to study the full nonlinear system and, as we show in sec-
tion 3, the grid arising in practice may be significantly different from the idealized
versions proposed in the literature.

The analysis in [1, section 3.4] is perhaps most closely related to ours. In
[1] the authors study a type I central difference scheme for a class of problems
with a sharp transition layer. They examine the small ¢ behaviour of the full
algebraic system by carefully constructing a solution for € = 0 and then showing
that the implicit function theorem is applicable. In this case the small € solutions
are O(e) perturbations of the base solution. Here the grid spacings are O(1)
outside the boundary layer and O(e) in the layer. We have chosen to analyze
the full algebraic system in a more direct manner. In section 3 we obtain precise
asymptotic expressions for the grid locations. In particular, we find that with
upwind differencing the grid spacings are larger than O(€) in the boundary layer
(Result 3.2). This behaviour could not be deduced immediately from the implicit
function theorem approach in [1]. In section 4 we construct approximate solutions
with small residuals. For type 1 central differences, these solutions are closely
related to those found in [1]. However, with upwinding, we have an O(ez) grid
spacing in the transition between the smooth region and the layer (Result 4.3); so
these solutions would not follow immediately from an implicit function theorem
analysis.

For convenience in the subsequent analysis, we introduce the further notation
d; := Uj — U,_; for solution differences and D; := d,/h; for scaled solution differ-
ences. Using this notation, we note that with SFD equidistribution, independently
of the finite difference formula, we must have D; # 0 for all j. (Otherwise, since
h; > 0 for all j, (12) gives D; = 0 and hence U; = 0, which contradicts Uy = 1.)
We also note that upwind differencing (11) may be written

h; + h;
Djy1 = (1 + %) D; (17)

and so D; > 0 for all j. This makes clear the well-known result that upwind
solutions are monotonic.



2 First Derivative Equidistribution

In the special case of m = 1 in (12) or &« = 1 in (16), the grid equidistribution
equations simplify to
hi|Dj| = hjs1|Djsal. (18)

In this case the overall finite difference and grid system can be solved exactly.

Result 2.1 Type I differencing
Suppose type I finite differences are used with SFD equidistribution and m = 1.
Then for small € the grid is unique and satisfies

Ehj
hj + €

hj_|_1: , 1S]SN—1 (19)
Further hy = O(1), hy = € + O(€®) and hjy1 < hj. The solution U; increases
monotonically.

Proof:
From (8) and (9), the finite difference equations may be written

2¢(Dj1 — Dj) = hj1aDji + hyD;. (20)

We split (18) into two cases.
Case A: successive D;’s have different sign
If thj = —hj+1Dj+1 for any j, then (20) gives Dj = Dj_|_1, which is a
contradiction. Thus solutions of this type are not possible.
Case B: successive D;’s have same sign
If h;D; = hjy1D;+1 then (20) reduces to (19). This may be written as a
simple recurrence in €/h;, which solves to give h; = €/(c+ j), where the constant
¢ is determined by (13). The remaining facts about {h;}7_, follow from (19). The
common sign of the D;’s must be positive, and so {U;}/_, increases monotonically.
|

Result 2.2 Type II differencing
Suppose type II finite differences are used with SFD equidistribution and m = 1.
Then for small € the grid is unique and satisfies

h; =%+2(N— 1-2(j —1))e (21)

The solution U; is oscillatory (sign(D;) = —sign(D;11)).

Proof:



From (8) and (10), the finite difference system may be written

2¢

1
hj+ hji1 (Djs1 = Dj) = §(Dj+1 +Dj). (22)

We consider two cases for (18).
Case A: successive D;’s have different sign
If h;D; = —h;+1Dj4;1 then multiplying by hj4; in (22) and rearranging gives
hj+1 = hj — 4e, which requires h; > 4e.
Case B: successive D;’s have same sign
If h]DJ = hj+1Dj+1 then (22) giVGS

hj_|_1 = —hj — 2¢ + 2\/ 62 + 2€hj, (23)

which leads to a positive h;;; if and only if h; < 4e. Note also that (23) then
gives hji1 < =24 2ve? + 8¢ = 4e.

Now, we combine the results for cases A and B. First, note that case B cannot
hold for all j, since this will give Z;VZI h; < 4Ne < 1, contradicting (13). Further,
if case B holds for j = k then it must hold for all j > k (since case A requires
h; > 4e¢). The remaining possibilities are: case A holds for all j, or case A holds
for 1 < 7 < k and case B holds for K +1 < 7 < N — 1. However, in the latter
circumstance, we have hy 1 < 4e, h; < 4e for j > k and h; = hj;1 +4e for j <Kk,
so all h; are O(e), which contradicts (13). Thus the only possibility is that case A
holds for all j. The expression (21) then follows immediately. |

Result 2.3 Upwinding

Suppose upwind finite differences are used with SFD equidistribution and m = 1.
Then for small € the grid is unique with hy = O(1), hj < 2¢ for j > 1 and h;
monotonic decreasing. The solution U; is monotonic.

Proof:
Using h;jD; = hj11Dj1q, (17) can be rearranged to give
hi _ 2e+ hjn
hiv1 26— hji

Hence, h; < 2¢ for j > 2 and the h;’s are monotonic decreasing. Then (13) gives
hy = O(1). Note that specifying hy determines the complete sequence {h;};.
Regarding Z;VZI h; as a function of h, it can be shown that this function increases
monotonically, hence there is a unique h; that gives (13). |

The results above apply to the case where grid selection is based solely on
the size of an approximation to the first derivative. Intuitively, we would expect
this approach to place all grid points in the boundary layer. Results 2.1 and 2.3
show that this indeed happens for type I central and upwind differences; both
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give hy = O(1) and h; = O(e) for j > 1. Also, both schemes give monotonic
solutions. However, Result 2.2 shows that type II central differencing does not
take into account the boundary layer, giving an almost a uniform grid and an
oscillatory solution.

Figure 2 illustrates Results 2.1 and 2.3. Here, we have used N = 19 and
a range of € values from 107! to 107°. The upper pair of pictures show how
(1 — hy)/e varies as a function of e. We see that for both type I and upwind
differencing 1 — h; tends to a fixed multiple of ¢, with the multiple being larger
for upwinding. The middle pair of pictures show h;/e for 2 < j7 < N. We see
that as e decreases these grid spacings converge to fixed multiples of e. Finally,
the bottom pair of pictures confirm that the {U;} are monotonic.

Type | Central Upwind
107" — 107 —
€107 €107
10 10° :
325 33 335 34 345 35 4 45 5 55
(1-hL))e (1-h())e
02 04 06 08 1 . T 15 2
h(2:N)/e h(2:N)/e

U on mesh
o
(4,1

U on mesh
o
(4,1

0 0.2 0.4 0.6 0.8 1

Figure 2: Numerical solutions for SFD with m = 1: top row: (1 — hy)/e; second
row: hj/e for 2 < j < N; third row: {z;, U;}.

In the remaining analysis, we consider only type I central and upwind differ-

encing.

3 Smoothed first derivative solutions

We now analyze the general SFD strategy (12). By treating € as a small parameter,
we are able to find leading order expressions for the grid spacings.
The grid equations may be written

hi'|Dj| = hiy1|Djsal, (24)
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and we recall that D; # 0 for all 5.

Result 3.1 Type 1 differencing

Suppose type I finite differences are used with SFD equidistribution. If, for small
€, a numerical solution exists that is monotonic for U;, then hy = O(1), hy < 2¢
and the h;’s are monotonic decreasing.

Proof: It follows from the finite difference equations (20) that

h; + 2¢
Dj.1 =—D; (ﬁ) :
J

Hence, in order for the D;’s to have the same sign we require h;; < 2¢ for j > 1.
Since (13) holds, h; = O(1).
Now, using (24), we may rearrange (20) to give

h;'T—LH _ 2 — hjy1
h;n 2¢ + hj ’

which shows that the h;’s are monotonic. 1

Result 3.2 Upwinding

Suppose upwind finite differences are used with SFD equidistribution for m > 1.
If, for sufficiently small €, a numerical solution exists then there is a constant C
such that

L= < py < oY =12, N.

Proof: Using D; > 0 and substituting (24) into (17) gives

m 2¢
hiti=h

m , 25
]2€+hj+hj+1 ( )

which shows that {h;} decreases monotonically. It then follows from (13) that
1/N < hy < 1. We will write this in the form

By’ < hy < Che™,

where p; =0, By = 1/N and C, = 1. Using (25) with j = 1 then gives

By < h;’% _ ohmle < 9Ol m-Tp+,
1

So
hy < Cae™,

9



where Cy = (2C™ 1™ and py = ((m —1)py +1)/m. Since 1 > py > p; we have,
for sufficiently small €, 2¢ + hy + hy < 2h;. So, in (25),

L
2h
This gives
ho > Bge,

with By = B§m_1)/ ™. Proceeding by induction, suppose that
Bj€pj S hj S Cijj, 1 S j S k, (26)

for constants {B;, Cj, p; Yi_;, with 1 > pp > pg_y > --- > p1 = 0. Then (25) gives

2
mo < h;:h—z = 2K e < 20T m—DpitL,

So
hi1 < Cryr€Pr+,

where Cyyp = (207 1)Y™ and pgyy = ((m — 1)pp + 1)/m. Since 1 > pp1 > pi
we have, for sufficiently small €, 2¢ + hy + hy1 < 2hy. So, in (25),
2
By > BT = B le > Bl et
2hy,
This gives
hiy1 > Byppre

with By = B ™Y/™ . Hence, by induction, (26) holds for all k.
Note that pjy1 = ((m — 1)p; + 1)/m, so pj+1 is a weighted average of p; and
1. Using p; = 0, it follows that

pr=1—((m—1)/m)’ .

Setting C' = max; C; completes the upper bound. For the lower bound, note that
B; > B, for all j. Since hy =1 — Z;VZZ h; =1 — O(e"), we may take B; to be
arbitrarily close to 1-—for definiteness, we have chosen the value 1/2. 1

Taking the limit as m — 1 in Result 3.2 gives h; = O(1) and h; = O(e) for
j > 2, which agrees with Result 2.3. Generally, for m > 1, Result 3.2 shows that
the grid spacing at the right-hand boundary satisfies

m—1

hy > Ll (27)

N —

Hence, for fixed m > 1 and NV, and sufficiently small ¢, there are no grid points in
the O(e) boundary layer. Intuitively, we would expect that the finite difference

10



scheme cannot then resolve the boundary layer accurately, in the sense that any
natural interpolation process that produces a global solution from the discrete
date {x;,U;}}_, will have a large error in the layer. We now show that this is
indeed the case for piecewise constant and piecewise linear interpolation.

We first show that, since xy_; is outside the boundary layer, u(zy_;) is
exponentially small.

Lemma 3.3 Suppose upwind finite differences are used with SFD equidistribution
for fited m > 1 and N. Let v = y(m,N) = ("‘7’1)]\’_1 > 0. If, for sufficiently
small €, a numerical solution exists then

1

log (u(zy_1)) <log(2) — %0

Proof: We know from Result 3.2 that, for sufficiently small ¢, zy_1 =1 —hy <
1 — 17, Hence, in (3),

T 1-2el=
e« —1 <€ ¢
elle 1 — %61/6

u(zy_1) <u(l—1ie!7) = —9e 3¢

2
Taking logs gives the required result. |

Result 3.4 Suppose upwind finite differences are used with SFD equidistribution
for fited m > 1 and N. Let u(x) denote either a piecewise constant or a piecewise
linear interpolant to {z;, Uj}j-vzo. If, for sufficiently small €, a numerical solution
exists then

maxp ] |u(z) — a(z)| > (28)

1
1

Proof: In the case where u(z) is piecewise constant, consider the interval [xy_1, 1].
We know that u(xy) = 1 and yet, from Lemma 3.3, u(zy_1) is exponentially
small. Hence, whatever constant value @(x) takes in this interval it must be in
error by at least 1/4 at one of the endpoints.

In the piecewise linear case, consider & = (xy_1 + 1)/2. Since Uy_; > 0
and Uy = 1 we have 4(Z) = (uny-1 + 1)/2 > 1/2. However, as in the proof of
Lemma 3.3, we can show that u(Z) is exponentially small, and so 4(Z) — u(z) >
/4. n

Figure 3 illustrates Results 3.2 and 3.4 for the case N = 19, m = 7 with a
range of € values between 10~! and 107'2. In each case, we generated a grid by
making use of the analysis in the proof of Result 3.2. Given h;, we computed
ha, hs, ..., hy in sequence; hj;;; was found by solving the polynomial equation
given by (25) using MATLAB’s roots [9]. In this way Z;VZI |h;| was regarded as

11



a function of h; alone, say f(h;). The remaining nonlinear equation f(h;) =1
was solved with MATLAB’s fzero. The left-hand picture shows hy/€®, where
B=1-((m—1)/m)¥"! ~ 0.94, as a solid line and hy /e as a dashed line. We
see that hy/e® appears to be bounded, whereas hy /e grows unboundedly for
small €, as predicted by Result 3.2. A least squares fit of the parameters ¢, ¢y in
log(hn) = c1log(e) + ¢z gave ¢; = 0.928 with a 2-norm residual of 5.6 x 1073, The
right-hand picture shows the error at zy_; (solid) and the error in the piecewise
linear interpolant at (zx_1 + 1)/2 (dashed). We see that as € is reduced all mid-
nodal accuracy is lost, although the gridpoint error ultimately improves. The
O(1) error at x = (xy_; + 1)/2 agrees with Result 3.4. The numerical results
for x = xx_1 emphasize that it is possible for a numerical method to resolve the
boundary layer inadequately and yet still have good accuracy at each gridpoint.

Upwind h (scaled) Upwind Error

0.7

T T
B
— /¢ — errorat X,
-2 hye — - errorat (><N_1 +1)/2
x o6l
\
\
\
6y
\
\
\
5r \
\
_CZ \\ o
Ba N 2
[ [
2 \
.
\
3F \
Y
Y
Y
2b AN
N
Y
.
~
1 .
~
&
0 12 9 6 3 0 12 9 6 3
10 10 10 10 10 10 10 10
€ €

Figure 3: Behaviour of Ay and the error for upwind with sSFD: N =19, m =7,
102 <e<10t, 3=1~-(6/7)8 ~0.94.

In contrast to Result 3.4, the following result can be inferred from [2, Theo-
rem 10] (which generalizes analysis in [4]):

Theorem 3.5 (Mackenzie, 1999) Consider the upwind scheme on (1) with
grid spacings h; chosen to ezactly equidistribute (du/dz)Y™, with some m > 2,
for the exact solution (3). Then letting u(z) denote either the piecewise constant
or the piecewise linear interpolant to {z;, Uj};-V:O, the error satisfies

C
maxpq]|u(z) — u(z)| < N’ (29)

12



where the constant C s independent of €.

We note that the convergence behaviours described by (28) and (29) are not
compatible. The e-uniform convergence bound (29) holds under the assumption
that the exact solution is equidistributed (in which case an analytic formula is
available for the grid). Result 3.4 shows that when this assumption is discarded,
the solution obtained with the grid that arises in practice has an error of O(1)
for sufficiently small e. We conclude that it can be misleading to study the
behaviour of numerical schemes on analytically defined grids that are designed
to be representative of grids that arise in practice. However, we emphasize that
the analysis in [2, 4] is backed up by numerical experimentation; see, for example
Table 2 (B) in [4] where for m = 2 and € = 10 the errors on the analytically
defined and practically computed grids are virtually identical. In our numerical
experiments, as expected from (27), we found it necessary to take either NV small
or m large in order to observe the non-uniform convergence effect in Result 3.4 for
a value of € at which (1) is a physically reasonable model. We also emphasize that
our computations for Figure 3 used specific information about the constraints that
determine the grid. A general nonlinear system solver may give different results
for small € due to the inherent ill-conditioning.

Overall, however, Result 3.4 makes it clear that it can be dangerous to draw
general conclusions from insights obtained via idealized assumptions.

4 Leading order residuals with generalized arc
length

In this section we construct families of leading order residual solutions for GAL
equidistribution. In the case of type I central differences, these solutions have
G(h, U) = O(e), whereas for upwinding they have G(h, U) = O(ez). We then
show that these approximate solutions are relevant in the sense that when they
are fed as initial data into a nonlinear equation solver, they lead to exact solutions
(to within rounding error) of the same form.

We are interested in solutions that respect the existence of the boundary layer.
We see from Figure 1 that, at least visually, the true solution roughly consists of
two straight line sections. Considering how the arc length of such a solution can
be equidistributed leads to the idea of a numerical solution where, for some M,
the grid is uniform for j < M and the solution differences are uniform for j > M.
We formalize this in the following definition.

Definition 4.1 A (r, h,d) uniform partition is a pair h, U such that h; = h for
1<j<Mandd;=6 for M +1<j <N, withr given by r := (F=2)2

Result 4.2 Type 1 differencing
Suppose type I finite differences are used with GAL equidistribution.

13



Given any even M for which r < 1% there exist two distinct (r, h, ) uniform
partitions for which G(h,U) = O(€). These partitions have h = 1/M, hpy1 =
Ke, where K(> 1) may take either of the two positive values

2
K. = (30)
12,/1- (=2)r
and
B = -9 M1<j<N—1 (31)
They also have 0,41 = —0; + O(€) for 1 < j < M —1,6 = NEM and Oy =

6(2 — 1)+ O(e). Taking K = K, or K = K_ produces the two solutions.
Given any odd M for which r < {2 + 4z there exist two distinct (r, h,0)

uniform partitions for which G(h,U) = O(e). These partitions have h = 1/M,
hyrv1 = Ke, where K(> 1) may take either of the two positive values

2|(1— Myr+ L) £ M /o1~ M2+ a(M2(1+7) 1))
K, = NG (32)

and h

6j .

R M+1<45j<N—-1. 33
hj+6’ tl=J= ( )

They also have 0j41 = —0; + O(€) for 1 < j < M -1, 6 = }foﬁ and Oy =
1+ (257)(2 = 1) " (5257) (2 = 1) + O(e). Taking K = K, or K = K_
produces the two solutions.

hjs1 =

Proof We consider first the case where M is even. We prove existence by
constructing the solution over the smooth region and the boundary layer and
then patching the two solutions across the interface.

Smooth region: 1 <j< M -1
Setting h; = h = 1/M, the finite difference equations give (for h > 2¢)

Djiy =—D, (%), 1<j<M-—1.
This shows that §;11 = —d; + O(e) for 1 < j < M — 1. Specifying s determines
{(53'}]-”;1 and thus {U;}}Z,. Note that since M is even, we have Uy = O(¢). To
simplify the remaining analysis, we perturb Uy, to the value zero. (This has no
effect on the residual in the finite difference equations, to leading order). The
grid equations (16) for 1 < j < M — 1 are satisfied to O(e) because

(1—a)h§+a6?:(1—a)h2+a(5}2\4+0(6), 1<j<M-1

14



Boundary layer: M +1<j;< N

Setting 6; = 0 = 1/(N — M) for M +1 < j < N, the finite difference equations
give (31). We will let hpr1 = Ke for some constant K. The remaining values
{h;}iprvo and {U;}0C,,, are then completely determined. Note that h; = O(e)
for M +1 < j < N. The grid equations (16) for M + 1 < j < N are satisfied to
leading order since

(1—a)h+ad; =0(€) +as®> M+1<j<N,

and also (13) holds to O(e).

Interface: j = M

It remains to satisfy the finite difference and grid equation at 7 = M. We still
have §;, and K at our disposal. The finite difference equation at j = M gives

5= o () s (2, +0(e) (34)
=0| 5——|=0(—=— €).

M 211 K

Applying the grid equation at j = M and using (34) gives

2
(1 —a)h?® + ad? (% — 1) = ad® + O(e).

Using h=1/M, 6 =1/(N — M) and r = (N — M)/M)? = (h/§)?, we obtain

r= -2 (1—(%—1)2).

11—«

Given any 7 < /(1 — a) we can satisfy this condition with the two choices (30).
This completes the construction for M even.

The proof for M odd proceeds similarly.
Smooth region: 1 <j< M -1
The results follow as in the case for M even. Note that since M is odd, we have
Uy = 0y + O(e). To simplify the remaining analysis, we perturb Uy, to the
value ;. (This has no effect on the residual in the finite difference equations, to
leading order). The grid equations (16) for 1 < j < M — 1 are satisfied to O(e)
as before.
Boundary layer: M +1<j;< N
Setting 0, = 6 = (1 — 0ar)/(N — M) for M +1 < j < N, the finite difference
equations give (33). The remaining analysis follows as before.
Interface: j = M
It remains to satisfy the finite difference and grid equations at j = M. We still
have 65, and K at our disposal.

The finite difference equation at j = M gives

5o [P 1 (2 +0(e) (35)
M — %—i—]_ - K €).

15



This can be rearranged to give d,, as displayed in the statement of the result.
The grid equation at j = M is, using (35),

2
(1 - a)h?®+ ad® (% - 1) = ad® + O(e).

Usingh =1/M,§ = (1—0p)/(N—=M) andr = (N-M)/M)?* = (h(1-6M)/5)?,
we obtain (1 6a)?
A TOM) (2 )2
=t (1-2-1").
For any r < /(1 — ) +1/M? this constraint is satisfied by the two choices (32).

This completes the construction. 1

The interval [0, ] corresponds to the smooth region and [z, 1] to the
boundary layer. It follows from (31) that 1 — x5, = O(€), so these approximate
numerical solutions have the layer width qualitatively correct. Also, the solution
is monotone in the boundary layer. However, O(1) oscillations are present in
the smooth region. The oscillatory solution is sawtoothed about the x-axis. The
teeth point downwards for K = K, and upwards for K = K_. The amplitude
of the oscillations is the same for K, and K _, but the size of the first grid space
in the layer is smaller for K_ than for K. In the commonly used case a = %,
Result 4.2 says that if we ask for any ratio r < 1—that is, we ask for more spaces
in the smooth region than the boundary layer—then two distinct leading order
solutions exist.

In Figure 4, the circles denote the leading order residual solution constructed
in Result 4.2 for the case e = 107", a =1, N =19, M = 12 and K = K in (30).
We then supplied this approximate solution as an initial guess to a nonlinear
equation solver. This solver was written in MATLAB [9] by M. Reichelt and
L. F. Shampine [7] and is based on the FORTRAN code MINPACK [3]. We
specified a tolerance of 107'2 in the convergence criterion for the solver. The
resulting solution is plotted with crosses. It is clear that the approximate solution
from Result 4.2 is close to a solution that can be computed in practice. Figure 5

repeats the experiment with K = K_, and the same conclusions apply.

Result 4.3 Upwinding

Suppose upwind differences are used with GAL equidistribution. Given any M for
. . . .y . . 1

which r = =% there is a (r, h,0) uniform partition with G(h,U) = O(ez). These

l1-a
partitions have h = 1/M, hpyq = Ke%, where K > 0 is any constant, and for
Jj > M +2 the hj’s are O(€) and monotonic decreasing. Also, 6; = O(extM )
1

for1<j<M,é=+5 and5M=5%+o(e%).

Proof As for Result 4.2, we prove existence by construction.
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Grid Spacings
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Figure 4: Leading order solution from Result 4.2 using K = K, (circles), and
computed solution (crosses).

Smooth region: 1 <j< M -1
Setting h; = h = 1/M, the finite difference equations give

D]-H:Dj<1+@>, 1<j<M-—1.
€

It follows from (36) below that &, = O(ez), and hence §; = O(ez*M~7) for
1 <j < M —1. Specifying 65, determines {4; jﬂgl and thus {U;};Z;. The grid
equations (16) for 1 < j < M — 1 are then satisfied to O(e2) because

(1—a)h§+a5]2-=(1—a)h2+0(e%), 1<j<M-1.

Boundary layer: M +1<j;< N

Setting 6; = 6 = 1/(N — M) for M +1 < j < N, the finite difference equations
give

—(hj + 2€) + /(h; + 2€)% + 8¢h;
2 3

hjp1 = M+1<j<N-1.

We let hprp = K e for some constant K. The remaining values {hj}é-v: M4 and
{U;};Z 1141 are then completely determined. Note that h; = O(e) for M +2 <
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Grid Spacings
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Figure 5: Leading order solution from Result 4.2 using K = K_ (circles), and
computed solution (crosses).

j < N and the h;’s are monotonic decreasing. The grid equations (16) for
M+ 1< j < N are satisfied to leading order since

l—a)h2+aé?=0()+ad® M+1<j<N,
j j

and (13) holds to O(e2).
Interface: j = M

It remains to satisfy the finite difference and grid equations at j = M. We still
have d,; and K at our disposal.

The finite difference equation at j = M gives

2€ 1
2e2 1
Sar = 0 ( harr ) =6 ;{ + o(e?). (36)

E+l
The grid equation at j = M is, using (36),
(1—a)h? = ad® + O(e). (37)

Inserting h =1/M, 6 =1/(N — M) and r = (N — M)/M)? = (h/§)?, we satisfy
this to leading order with

(38)

This completes the construction. 1
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In Result 4.3 we see that 1 — zp41 = O(€), so the equidistribution scheme
successfully places points in the boundary layer.

In the case a = %, Result 4.3 applies when r» = 1, that is, there is an equal
number of spaces in the smooth region and the boundary layer, which requires
N even.

In Figure 6, the circles denote the leading order solution constructed in Re-
sult 4.3 for the case e = 1077, a = %, N =20, M =10 and K = 1. We then
supplied this approximate solution as an initial guess to a nonlinear equation
solver, as for Figures 4 and 5. The resulting solution is plotted with crosses. The
approximate solution is seen to have the same qualitative form as the one that is
computed by the solver. The interface grid spacing hr4+1 has moved slightly—this
is inevitable since we chose K arbitrarily. To confirm the Ay, = K €3 prediction
of Result 4.3, we repeated this experiment for e = 107*,107%,107%,10°7,10°%
and computed a least squares solution of log hps41 = log(K) + alog(e). This gave
log(K) = 0.3969 and a = 0.4929 with a 2-norm residual of 0.0293.

Grid Spacings
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Figure 6: Leading order solution from Result 4.3 with K = 1 (circles), and
computed solution (crosses).

5 Conclusions

Our overall conclusion in this work is that the grid depends on both the equidis-
tribution algorithm and the finite difference formula. In section 2 we saw dra-
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matically different grids occurring for SFD with m = 1 in the case of type I and
type 1I central differencing. Section 3 showed that general SFD equidistribution
puts grids points in the boundary layer when type I central differences are used,
but misses the layer (and consequently does not give e-uniform convergence) with
upwinding. In section 4 we saw that GAL equidistribution induces an O(e?) grid
spacing at the interface between the smooth region and the boundary layer—a
feature that is not present with type I central differencing.

Our approach was to analyze the algorithms directly on the widely-studied
test problem (1). We emphasize that the upwind analysis in sections 3 and 4
involved quantities larger than O(e), and hence our results would not follow from
straightforward application of the implicit function theorem.

Result 3.4 was perhaps our most surprising result, showing that despite previ-
ous numerical and analytical evidence to the contrary, upwind differencing with
a smoothed first derivative equidistribution scheme is not e-uniform convergent.
It would thus be of interest to look for an alternative equidistribution scheme for
upwind differencing that is both effective in practical tests and provably e-uniform
convergent on (1).

Another negative feature that showed up in our work was the lack of unique-
ness identified in Results 4.2 and 4.3. (This effect was also pointed out for central
differences in [1].) The existence of many solutions to a steady problem may be
particularly harmful when a related time-dependent problem is to be integrated
to steady state. The numerical experiments in [8] indicate that complicated dy-
namics can arise in practice in the time-dependent case, and an extension of the
approach used here may explain some of the effects.
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