5,684 research outputs found

    Multiple transonic solutions and a new class of shock transitions in solar and stellar winds

    Get PDF
    The steady isothermal solar wind equations are shown to admit, under certain circumstances, mutliple transonic solutions when, for example, momentum deposition gives rise to multiplee critical points in the flow. These multiple solutions consist of a continuous solution and solutions which involve shock transitions between critical solutions. The ambiguity arising from the multiplicity of the solutions can be resolved by following the time evolution of a wind profile with one critical point. Results of the numerical integration of the time-dependent equations with momentum addition show that each of these multiple solutions is physically accessible and depends on the rate of change of momentum deposition. These results suggest that standing shocks are likely to be present in the inner solar wind flow

    Formation of standing shocks in stellar winds and related astrophysical flows

    Get PDF
    Stellar winds and other analogous astrophysical flows can be described, to lowest order, by the familiar one dimensional hydrodynamic equations which, being nonlinear, admit in some instances discontinuous as well as continuous transonic solutions for identical inner boundary conditions. The characteristics of the time dependent differential equations of motion are described to show how a perturbation changes profile in time and, under well defined conditions, develops into a stationary shock discontinuity. The formation of standing shocks in wind type astrophysical flows depends on the fulfillment of appropriate necessary conditions, which are determined by the conservation of mass, momentum and energy across the discontinuity, and certain sufficient conditions, which are determined by the flow's history

    Theoretical de Haas-van Alphen Data and Plasma Frequencies of MgB2 and TaB2

    Full text link
    The de Haas-van Alphen-frequencies as well as the effective masses for a magnetic field parallel to the crystallographic c-axis are calculated within the local spin density approximation (LSDA) for MgB2 and TaB2. In addition, we analyze the plasma frequencies computed for each Fermi surface sheet. We find a large anisotropy of Fermi velocities in MgB2 in difference to the nearly isotropic behavior in TaB2. We compare calculations performed within the relativistic non-full potential augmented-spherical-wave (ASW) scheme and the scalar-relativistic full potential local orbital (FPLO) scheme. A significant dependence for small cross sections on the bandstructure method is found. The comparison with the first available experimental de Haas-van Alphen-data by Yelland et al. (Ref. 19) shows deviations from the electronic structure calculated within both L(S)DA approaches although the cross section predicted by FPLO are closer to the experimental data. The elucidation of the relevant many-body effects beyond the standard LDA is considered as a possible key problem to understand the superconductivity in MgB2.Comment: Typos corrected, 3references added. Extended and corrected version of S. Elgazzar et al., Solid State Comm. v. 121, 99 (2002). 7pages, 4figures, AIP Conference Proc. "Correlated Electron Systems and High-Tc Superconductors" (ed. F. Mancini) (October 2001, Salerno, Italy

    Forward-Backward Asymmetries in Hadronically Produced Lepton Pairs

    Get PDF
    It has now become possible to observe appreciable numbers of hadronically produced lepton pairs in mass ranges where the contributions of the photon and Z0Z^0 are comparable. Consequently, in the reaction ppˉ→ℓ−ℓ++
p \bar p \to \ell^- \ell^+ + \ldots, substantial forward-backward asymmetries can be seen. These asymmetries provide a test of the electroweak theory in a new regime of energies, and can serve as diagnostics for any new neutral vector bosons coupling both to quarks and to charged lepton pairs.Comment: 11 pages, latex, 4 uuencoded figures sent separately, Fig. 2 revise

    Field-induced gapless electron pocket in the superconducting vortex phase of YNi2B2C as probed by magnetoacoustic quantum oscillations

    Full text link
    By use of ultrasound studies we resolved magneto-acoustic quantum oscillation deep into the mixed state of the multiband nonmagnetic superconductor YNi2B2C. Below the upper critical field, only a very weak additional damping appears that can be well explained by the field inhomogeneity caused by the flux-line lattice in the mixed state. This is clear evidence for no or a vanishingly small gap for one of the bands, namely, the spheroidal alpha band. This contrasts de Haas--van Alphen data obtained by use of torque magnetometry for the same sample, with a rapidly vanishing oscillation signal in the mixed state. This points to a strongly distorted flux-line lattice in the latter case that, in general, can hamper a reliable extraction of gap parameters by use of such techniques.Comment: 6 pages, 6 figure

    Atomic Parity Violation and Precision Electroweak Physics - An Updated Analysis

    Get PDF
    A new analysis of parity violation in atomic cesium has led to the improved value of the weak charge, QW(Cs)=−72.06±0.46Q_W({\rm Cs}) = -72.06 \pm 0.46. The implications of this result for constraining the Peskin-Takeuchi parameters S and T and for guiding searches for new Z bosons are discussed.Comment: 8 pages, LaTeX, 3 figures, Submitted to Physical Review D. Updated experimental inputs and references; clarification of notatio

    Tight-binding parameters and exchange integrals of Ba_2Cu_3O_4Cl_2

    Full text link
    Band structure calculations for Ba_2Cu_3O_4Cl_2 within the local density approximation (LDA) are presented. The investigated compound is similar to the antiferromagnetic parent compounds of cuprate superconductors but contains additional Cu_B atoms in the planes. Within the LDA, metallic behavior is found with two bands crossing the Fermi surface (FS). These bands are built mainly from Cu 3d_{x^2-y^2} and O 2p_{x,y} orbitals, and a corresponding tight-binding (TB) model has been parameterized. All orbitals can be subdivided in two sets corresponding to the A- and B-subsystems, respectively, the coupling between which is found to be small. To describe the experimentally observed antiferromagnetic insulating state, we propose an extended Hubbard model with the derived TB parameters and local correlation terms characteristic for cuprates. Using the derived parameter set we calculate the exchange integrals for the Cu_3O_4 plane. The results are in quite reasonable agreement with the experimental values for the isostructural compound Sr_2Cu_3O_4Cl_2.Comment: 5 pages (2 tables included), 4 ps-figure
    • 

    corecore