762 research outputs found

    Information-Driven Adaptive Structured-Light Scanners

    Get PDF
    Sensor planning and active sensing, long studied in robotics, adapt sensor parameters to maximize a utility function while constraining resource expenditures. Here we consider information gain as the utility function. While these concepts are often used to reason about 3D sensors, these are usually treated as a predefined, black-box, component. In this paper we show how the same principles can be used as part of the 3D sensor. We describe the relevant generative model for structured-light 3D scanning and show how adaptive pattern selection can maximize information gain in an open-loop-feedback manner. We then demonstrate how different choices of relevant variable sets (corresponding to the subproblems of locatization and mapping) lead to different criteria for pattern selection and can be computed in an online fashion. We show results for both subproblems with several pattern dictionary choices and demonstrate their usefulness for pose estimation and depth acquisition.United States. Office of Naval Research (Grant N00014-09-1-1051)United States. Army Research Office (Grant W911NF-11- 1-0391)United States. Office of Naval Research (Grant N00014- 11-1-0688

    DNA representation of variegating heterochromatic P-element inserts in diploid and polytene tissues of Drosophila melanogaster

    Get PDF
    Position-effect variegation (PEV) is the mosaic expression of a euchromatic gene brought into juxtaposition with heterochromatin. Fourteen different transformed Drosophila melanogaster lines with variegating P-element inserts were used to examine the DNA levels of these transgenes. Insert sites include pericentric, telomeric and fourth chromosome regions. Southern blot analyses showed that the heterochromatic hsp26 transgenes are underrepresented 1.3- to 33-fold in polytene tissue relative to the endogenous euchromatic hsp26 gene. In contrast, the heterochromatic hsp26 transgenes are present in approximately the same copy number as the endogenous euchromatic hsp26 gene in diploid tissue. It appears unlikely that DNA loss could account for the lack of gene expression in diploid tissues seen with these examples of PEV

    Observations of spatial flow patterns at the coral colony scale on a shallow reef flat

    Get PDF
    Although small-scale spatial flow variability can affect both larger-scale circulation patterns and biological processes on coral reefs, there are few direct measurements of spatial flow patterns across horizontal scales 1), had similarspatial patterns to wakes, while higher-frequency variations (0.05-0.1 Hz, KC<1) had no observable spatial structure. On the reef flat, both drag and inertial forces exerted by coral colonies could have significant effects on flow, but within different frequency ranges; drag dominates for low-frequency flow variations and inertial forces dominate for higher frequency variations, including the wave band. Our scaling analyses suggest that spatial flow patterns at colony and patch scales could have important implications or both physical and biological processes at larger reef scales through their effects on forces exerted on the flow, turbulent mixing, and dispersion. © 2013. American Geophysical Union. All Rights Reserved

    Atypical propylthiouracil-induced ANCA-positive vasculitis: report of a case with unusual clinical and histopathologic findings

    Get PDF
    The side effects of propylthiouracil, including cytopenia and vasculitis, are well established.  We present an interesting case in which cytopenia and cutaneous vasculopathy occurred concomitantly in a critically ill patient.  The patient was initially treated for suspected infection until dermatologic and rheumatologic workup revealed ANCA-positivity and vasculopathy on histopathology, most consistent with an atypical presentation of ANCA-positive vasculitis.  Upon initiation of immunosuppressive therapy, the patient’s condition rapidly improved emphasizing the importance of early recognition of this condition

    Hyperspectral darkfield microscopy of single hollow gold nanoparticles for biomedical applications

    No full text
    Hyperspectral microscopy is a versatile method for simultaneous spatial and spectroscopic characterization of nonfluorescent samples. Here we present a hyperspectral darkfield imaging system for spectral imaging of single nanoparticles over an area of 150 × 150 µm2 and at illumination intensities compatible with live cell imaging. The capabilities of the system are demonstrated using correlated transmission electron microscopy and single-particle optical studies of colloidal hollow gold nanoparticles. The potential of the system for characterizing the interactions between nanoparticles and cells has also been demonstrated. In this case, the spectral information proves a useful improvement to standard darkfield imaging as it enables differentiation between light scattered from nanoparticles and light scattered from other sources in the cellular environment. The combination of low illumination power and fast integration times makes the system highly suitable for nanoparticle tracking and spectroscopy in live-cell experiments

    Magneto-optical trapping of bosonic and fermionic neon isotopes and their mixtures: isotope shift of the ^3P_2 to ^3D_3 transition and hyperfine constants of the ^3D_3 state of Ne-21

    Full text link
    We have magneto-optically trapped all three stable neon isotopes, including the rare Ne-21, and all two-isotope combinations. The atoms are prepared in the metastable ^3P_2 state and manipulated via laser interaction on the ^3P_2 to ^3D_3} transition at 640.2nm. These cold (T = 1mK) and environmentally decoupled atom samples present ideal objects for precision measurements and the investigation of interactions between cold and ultracold metastable atoms. In this work, we present accurate measurements of the isotope shift of the ^3P_2 to ^3D_3 transition and the hyperfine interaction constants of the ^3D_3 state of Ne-21. The determined isotope shifts are (1625.9\pm0.15)MHz for Ne-20 to Ne-22, (855.7\pm1.0)MHz for Ne-20 to Ne-21, and (770.3\pm1.0)MHz for Ne-21 to Ne-22. The obtained magnetic dipole and electric quadrupole hyperfine interaction constants are A(^3D_3)= (-142.4\pm0.2)MHz and B(^3D_3)=(-107.7\pm1.1)MHz, respectively. All measurements give a reduction of uncertainty by about one order of magnitude over previous measurements

    Beta decay of 115-In to the first excited level of 115-Sn: Potential outcome for neutrino mass

    Full text link
    Recent observation of beta decay of 115-In to the first excited level of 115-Sn with an extremely low Q_beta value (Q_beta ~ 1 keV) could be used to set a limit on neutrino mass. To give restriction potentially competitive with those extracted from experiments with 3-H (~2 eV) and 187-Re (~15 eV), atomic mass difference between 115-In and 115-Sn and energy of the first 115-Sn level should be remeasured with higher accuracy (possibly of the order of ~1 eV).Comment: 9 pages, 3 figures; talk at the NANP'05 Conferenc
    • …
    corecore