6 research outputs found

    The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions

    Get PDF
    Rationale: Both glutamate and serotonin (5-HT) play a key role in the pathophysiology of emotional biases. Recent studies indicate that the glutamate N-methyl-d-aspartate (NMDA) receptor antagonist ketamine and the 5-HT receptor agonist psilocybin are implicated in emotion processing. However, as yet, no study has systematically compared their contribution to emotional biases. Objectives: This study used event-related potentials (ERPs) and signal detection theory to compare the effects of the NMDA (via S-ketamine) and 5-HT (via psilocybin) receptor system on non-conscious or conscious emotional face processing biases. Methods: S-ketamine or psilocybin was administrated to two groups of healthy subjects in a double-blind within-subject placebo-controlled design. We behaviorally assessed objective thresholds for non-conscious discrimination in all drug conditions. Electrophysiological responses to fearful, happy, and neutral faces were subsequently recorded with the face-specific P100 and N170 ERP. Results: Both S-ketamine and psilocybin impaired the encoding of fearful faces as expressed by a reduced N170 over parieto-occipital brain regions. In contrast, while S-ketamine also impaired the encoding of happy facial expressions, psilocybin had no effect on the N170 in response to happy faces. Conclusion: This study demonstrates that the NMDA and 5-HT receptor systems differentially contribute to the structural encoding of emotional face expressions as expressed by the N170. These findings suggest that the assessment of early visual evoked responses might allow detecting pharmacologically induced changes in emotional processing biases and thus provides a framework to study the pathophysiology of dysfunctional emotional biase

    Psilocybin biases facial recognition, goal-directed behavior, and mood state toward positive relative to negative emotions through different serotonergic subreceptors

    Full text link
    BACKGROUND: Serotonin (5-HT) 1A and 2A receptors have been associated with dysfunctional emotional processing biases in mood disorders. These receptors further predominantly mediate the subjective and behavioral effects of psilocybin and might be important for its recently suggested antidepressive effects. However, the effect of psilocybin on emotional processing biases and the specific contribution of 5-HT2A receptors across different emotional domains is unknown. METHODS: In a randomized, double-blind study, 17 healthy human subjects received on 4 separate days placebo, psilocybin (215 ÎĽg/kg), the preferential 5-HT2A antagonist ketanserin (50 mg), or psilocybin plus ketanserin. Mood states were assessed by self-report ratings, and behavioral and event-related potential measurements were used to quantify facial emotional recognition and goal-directed behavior toward emotional cues. RESULTS: Psilocybin enhanced positive mood and attenuated recognition of negative facial expression. Furthermore, psilocybin increased goal-directed behavior toward positive compared with negative cues, facilitated positive but inhibited negative sequential emotional effects, and valence-dependently attenuated the P300 component. Ketanserin alone had no effects but blocked the psilocybin-induced mood enhancement and decreased recognition of negative facial expression. CONCLUSIONS: This study shows that psilocybin shifts the emotional bias across various psychological domains and that activation of 5-HT2A receptors is central in mood regulation and emotional face recognition in healthy subjects. These findings may not only have implications for the pathophysiology of dysfunctional emotional biases but may also provide a framework to delineate the mechanisms underlying psylocybin's putative antidepressant effects

    Common effects of lithium and valproate on mitochondrial functions: protection against methamphetamine-induced mitochondrial damage

    Full text link
    Accumulating evidence suggests that mitochondrial dysfunction plays a critical role in the progression of a variety of neurodegenerative and psychiatric disorders. Thus, enhancing mitochondrial function could potentially help ameliorate the impairments of neural plasticity and cellular resilience associated with a variety of neuropsychiatric disorders. A series of studies was undertaken to investigate the effects of mood stabilizers on mitochondrial function, and against mitochondrially mediated neurotoxicity. We found that long-term treatment with lithium and valproate (VPA) enhanced cell respiration rate. Furthermore, chronic treatment with lithium or VPA enhanced mitochondrial function as determined by mitochondrial membrane potential, and mitochondrial oxidation in SH-SY5Y cells. In-vivo studies showed that long-term treatment with lithium or VPA protected against methamphetamine (Meth)-induced toxicity at the mitochondrial level. Furthermore, these agents prevented the Meth-induced reduction of mitochondrial cytochrome c, the mitochondrial anti-apoptotic Bcl-2/Bax ratio, and mitochondrial cytochrome oxidase (COX) activity. Oligoarray analysis demonstrated that the gene expression of several proteins related to the apoptotic pathway and mitochondrial functions were altered by Meth, and these changes were attenuated by treatment with lithium or VPA. One of the genes, Bcl-2, is a common target for lithium and VPA. Knock-down of Bcl-2 with specific Bcl-2 siRNA reduced the lithium- and VPA-induced increases in mitochondrial oxidation. These findings illustrate that lithium and VPA enhance mitochondrial function and protect against mitochondrially mediated toxicity. These agents may have potential clinical utility in the treatment of other diseases associated with impaired mitochondrial function, such as neurodegenerative diseases and schizophrenia

    Mismatch negativity encoding of prediction errors predicts S-ketamine-induced cognitive impairments

    Full text link
    Psychotomimetics like the N-methyl-D-aspartate receptor (NMDAR) antagonist ketamine and the 5-hydroxytryptamine2A receptor (5-HT(2A)R) agonist psilocybin induce psychotic symptoms in healthy volunteers that resemble those of schizophrenia. Recent theories of psychosis posit that aberrant encoding of prediction errors (PE) may underlie the expression of psychotic symptoms. This study used a roving mismatch negativity (MMN) paradigm to investigate whether the encoding of PE is affected by pharmacological manipulation of NMDAR or 5-HT(2A)R, and whether the encoding of PE under placebo can be used to predict drug-induced symptoms. Using a double-blind within-subject placebo-controlled design, S-ketamine and psilocybin, respectively, were administrated to two groups of healthy subjects. Psychological alterations were assessed using a revised version of the Altered States of Consciousness (ASC-R) questionnaire. As an index of PE, we computed changes in MMN amplitudes as a function of the number of preceding standards (MMN memory trace effect) during a roving paradigm. S-ketamine, but not psilocybin, disrupted PE processing as expressed by a frontally disrupted MMN memory trace effect. Although both drugs produced positive-like symptoms, the extent of PE processing under placebo only correlated significantly with the severity of cognitive impairments induced by S-ketamine. Our results suggest that the NMDAR, but not the 5-HT(2A)R system, is implicated in PE processing during the MMN paradigm, and that aberrant PE signaling may contribute to the formation of cognitive impairments. The assessment of the MMN memory trace in schizophrenia may allow detecting early phases of the illness and might also serve to assess the efficacy of novel pharmacological treatments, in particular of cognitive impairments.Neuropsychopharmacology advance online publication, 26 October 2011; doi:10.1038/npp.2011.261

    The NMDA antagonist ketamine and the 5-HT agonist psilocybin produce dissociable effects on structural encoding of emotional face expressions

    Full text link
    RATIONALE: Both glutamate and serotonin (5-HT) play a key role in the pathophysiology of emotional biases. Recent studies indicate that the glutamate N-methyl-D-aspartate (NMDA) receptor antagonist ketamine and the 5-HT receptor agonist psilocybin are implicated in emotion processing. However, as yet, no study has systematically compared their contribution to emotional biases. OBJECTIVES: This study used event-related potentials (ERPs) and signal detection theory to compare the effects of the NMDA (via S-ketamine) and 5-HT (via psilocybin) receptor system on non-conscious or conscious emotional face processing biases. METHODS: S-ketamine or psilocybin was administrated to two groups of healthy subjects in a double-blind within-subject placebo-controlled design. We behaviorally assessed objective thresholds for non-conscious discrimination in all drug conditions. Electrophysiological responses to fearful, happy, and neutral faces were subsequently recorded with the face-specific P100 and N170 ERP. RESULTS: Both S-ketamine and psilocybin impaired the encoding of fearful faces as expressed by a reduced N170 over parieto-occipital brain regions. In contrast, while S-ketamine also impaired the encoding of happy facial expressions, psilocybin had no effect on the N170 in response to happy faces. CONCLUSION: This study demonstrates that the NMDA and 5-HT receptor systems differentially contribute to the structural encoding of emotional face expressions as expressed by the N170. These findings suggest that the assessment of early visual evoked responses might allow detecting pharmacologically induced changes in emotional processing biases and thus provides a framework to study the pathophysiology of dysfunctional emotional biases
    corecore