38 research outputs found

    Serological screening of the Schistosoma mansoni adult worm proteome

    Get PDF
    BackgroundNew interventions tools are a priority for schistosomiasis control and elimination, as the disease is still highly prevalent. The identification of proteins associated with active infection and protective immune response may constitute the basis for the development of a successful vaccine and could also indicate new diagnostic candidates. In this context, post-genomic technologies have been progressing, resulting in a more rational discovery of new biomarkers of resistance and antigens for diagnosis.Methodology/Principal FindingsTwo-dimensional electrophoresed Schistosoma mansoni adult worm protein extracts were probed with pooled sera of infected and non-infected (naturally resistant) individuals from a S. mansoni endemic area. A total of 47 different immunoreactive proteins were identified by mass spectrometry. Although the different pooled sera shared most of the immunoreactive protein spots, nine protein spots reacted exclusively with the serum pool of infected individuals, which correspond to annexin, major egg antigen, troponin T, filamin, disulphide-isomerase ER-60 precursor, actin and reticulocalbin. One protein spot, corresponding to eukaryotic translation elongation factor, reacted exclusively with the pooled sera of non-infected individuals living in the endemic area. Western blotting of two selected recombinant proteins, major egg antigen and hemoglobinase, showed a similar recognition pattern of that of the native protein.Concluding/SignificanceUsing a serological proteome analysis, a group of antigens related to the different infection status of the endemic area residents was identified and may be related to susceptibility or resistance to infection

    Application of acoustic models for polydisperse emulsion characterization using ultrasonic spectroscopy in the long wavelength regime

    No full text
    Ultrasonic spectroscopy is a technique that often has been used for measuring the particle size distribution in suspensions and emulsions. The ability to analyze concentrated heterogeneous systems and optically opaque samples, without the need for dilution, is the major advantage over alternative technologies, such as light scattering method. Several physical models used to interpret the measured attenuation spectra have been applied considering monodisperse particles. However, the polydisperse particle distributions are found in many practical applications, for example, in crude oil emulsions during droplet coalescence or flocculation. The polydispersity effects are usually important and need to be incorporated into theoretical predictions. For this work, acoustic spectroscopy within the frequency range 6–14 MHz was used to measure the droplet size distribution of water-in-sunflower oil emulsions for a volume fraction range from 10 to 50 % and considering monomodal size distribution. The results obtained from experimental attenuation spectra have been compared with the predictions of acoustic models from simple and multiple scattering, extended multiple scattering, and other simpler models of propagation usually applied to the long wavelength regime. The droplet size distributions from theoretical and experimental attenuation spectra were calculated with a deconvolution algorithm. The size distribution results obtained by ultrasonic spectroscopy showed good agreement with those obtained by laser diffraction analysis. The findings indicate that the methodology employed in this study is suitable for polydisperse particle size characterization for moderate concentrations up to 20 %602COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIOR - CAPESsem informaçãoThe authors would like to thank Petrobras and ANP for providing financial support for this work. Acknowledgments are also extended to ALFA–Artificial Lift & Flow Assurance Research Group for technical assistance in the design of the measurement system and the discussions, and CAPE

    Immunoreactive proteins to the pooled sera of individuals from the schistosomiasis endemic area.

    No full text
    <p>All <i>Smp</i> IDs can be found in schistodb.net. AW-TOT: adult worm total protein extract, AW-TEG: adult worm tegumental protein extract.</p>1<p>: actin was co-extracted from the same spot with reticulocabin, except in pH 5–8 IPG strip;</p>2<p>: annexin was co-extracted from the same spot with one of major egg antigen;</p>3<p>: the same protein corresponding to different spots and protein sequences;</p>4<p>: short-chain dehydrogenase was co-extracted from the same spot with four and A half lim domains;</p>5<p>: gene ID corresponding to Smp_018890 and Smp_187370;</p>6<p>: troponin I from <i>S. japonicum</i>;</p><p>*: proteins selected to <i>in vitro</i> recombinant protein expression.</p

    Genotyping and descriptive proteomics of a potential zoonotic canine strain of Giardia duodenalis, infective to mice

    No full text
    The zoonotic potential of giardiasis, as proposed by WHO since the late 70's, has been largely confirmed in this century. The genetic assemblages A and B of Giardia duodenalis are frequently isolated from human and canine hosts. Most of the assemblage A strains are not infective to adult mice, which can limit the range of studies regarding to biology of G. duodenalis, including virulence factors and the interaction with host immune system. This study aimed to determine the infectivity in mice of an assemblage A Giardia duodenalis strain (BHFC1) isolated from a dog and to classify the strain in sub-assemblages (Al, All, AIII) through the phylogenetic analysis of beta-giardin (bg), triose phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. In addition, the proteomic profile of soluble and insoluble protein fractions of trophozoites was analyzed by 2D-electrophoresis. Accordingly, trophozoites of BHFC1 were highly infective to Swiss mice. The phylogenetic analysis of tpi and gdh revealed that BHFC1 clustered to sub-assemblage Al. The proteomic map of soluble and insoluble protein fractions led to the identification of 187 proteins of G. duodenalis, 27 of them corresponding to hypothetical proteins. Considering both soluble and soluble fractions, the vast majority of the identified proteins (n = 82) were classified as metabolic proteins, mainly associated with carbon and lipid metabolism, including 53 proteins with catalytic activity. Some of the identified proteins correspond to antigens while others can be correlated with virulence. Besides a significant complementation to the proteomic data of G. duodenalis, these data provide an important source of information for future studies on various aspects of the biology of this parasite, such as virulence factors and host and pathogen interactions1110CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO - CNPQFUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE MINAS GERAIS - FAPEMIGsem informaçã

    Genotyping and Descriptive Proteomics of a Potential Zoonotic Canine Strain of Giardia duodenalis, Infective to Mice

    No full text
    Submitted by Sandra Infurna ([email protected]) on 2017-03-02T18:57:50Z No. of bitstreams: 1 alex_chapeaurouge_etal_IOC_2016.pdf: 1813108 bytes, checksum: d2d4db74321df407e1868919c06835d6 (MD5)Approved for entry into archive by Sandra Infurna ([email protected]) on 2017-03-02T19:11:30Z (GMT) No. of bitstreams: 1 alex_chapeaurouge_etal_IOC_2016.pdf: 1813108 bytes, checksum: d2d4db74321df407e1868919c06835d6 (MD5)Made available in DSpace on 2017-03-02T19:11:30Z (GMT). No. of bitstreams: 1 alex_chapeaurouge_etal_IOC_2016.pdf: 1813108 bytes, checksum: d2d4db74321df407e1868919c06835d6 (MD5) Previous issue date: 2016Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Universidade de Campinas. Centro de Biologia Molecular e Engenharia Genética. Campinas, SP, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.Fundação Oswaldo Cruz. Instituto Oswaldo Cruz. Laboratório de Toxinologia. Rio de Janeiro, RJ, Brasil.Universidade Federal de Minas Gerais. Departamento de Biologia Geral. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Departamento de Parasitologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.Georgetown University. Biology Department. Washington, USA.Fundação Oswaldo Cruz. Centro de Pesquisas René Rachou. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Farmácia. Departamento de Análises Clínicas e Toxicológicas. Belo Horizonte, MG, Brasil.The zoonotic potential of giardiasis, as proposed by WHO since the late 70's, has been largely confirmed in this century. The genetic assemblages A and B of Giardia duodenalis are frequently isolated from human and canine hosts. Most of the assemblage A strains are not infective to adult mice, which can limit the range of studies regarding to biology of G. duodenalis, including virulence factors and the interaction with host immune system. This study aimed to determine the infectivity in mice of an assemblage A Giardia duodenalis strain (BHFC1) isolated from a dog and to classify the strain in sub-assemblages (AI, AII, AIII) through the phylogenetic analysis of beta-giardin (bg), triose phosphate isomerase (tpi) and glutamate dehydrogenase (gdh) genes. In addition, the proteomic profile of soluble and insoluble protein fractions of trophozoites was analyzed by 2D-electrophoresis. Accordingly, trophozoites of BHFC1 were highly infective to Swiss mice. The phylogenetic analysis of tpi and gdh revealed that BHFC1 clustered to sub-assemblage AI. The proteomic map of soluble and insoluble protein fractions led to the identification of 187 proteins of G. duodenalis, 27 of them corresponding to hypothetical proteins. Considering both soluble and soluble fractions, the vast majority of the identified proteins (n = 82) were classified as metabolic proteins, mainly associated with carbon and lipid metabolism, including 53 proteins with catalytic activity. Some of the identified proteins correspond to antigens while others can be correlated with virulence. Besides a significant complementation to the proteomic data of G. duodenalis, these data provide an important source of information for future studies on various aspects of the biology of this parasite, such as virulence factors and host and pathogen interactions
    corecore