45 research outputs found

    Oxide chemistry and fluid inclusion constraints on the formation of itabirite-hosted iron ore deposits at the eastern border of the southern Espinhaço Range, Brazil

    Get PDF
    The Piçarrão and Liberdade deposits contain high-grade iron orebodies (>65% Fe) hosted in the Guanhães Group itabirite, that are associated with pegmatite veins and bodies. Fluid inclusion studies in quartz veins associated with the high-grade orebodies show that medium to high salinities (25–28 wt% NaCl eq.) and temperatures (275–375 °C) fluids are associated with the silica leaching that led to the iron enrichment. Mineral chemistry studies by LA-ICP-MS in the iron oxides demonstrate that metasomatic processes were responsible for the mineralogical transformations of magnetite to hematite and for subsequent hematite recrystallization. These processes are related to the iron upgrade in the itabirite and the formation of high-grade orebodies. The oxidation of the magnetite to martite is associated with an enrichment in P and As, and depletion in Mg, Ti and Co; as observed in martite crystals compared to their matching kenomagnetite rims. On the other hand Ti and Mo are enriched in hematite crystals that recrystallized from martite. In this case Ti behaved as an immobile element, and its enrichment is accompanied by the depletion of most of the trace elements. A second stage of magnetite formation precipitated with quartz in discordant veins and is oxidized to martite-II. These quartz-martite-II veins contain low salinity and temperature fluid inclusions that record an episode of meteoric fluid influx. The results of the LA-ICP-MS analyses on the fluid inclusions from pegmatite and quartz veins associated with the high-grade iron bodies indicate the contribution of anatectic fluids in the evolution of the metasomatic events

    The Orosirian-Statherian banded iron formation-bearing sequences of the southern border of the Espinhaço Range, Southeast Brazil

    No full text
    The Serra da Serpentina and the Serra de São José groups are two distinct banded iron formation-bearing metasedimentary sequences along the eastern border of the southern Espinhaço Range that were deposited on the boundary between the Orosirian and Statherian periods.The Serra da Serpentina Group (SSG) has an Orosirian maximum depositional age (youngest detrital zircon grain age = 1990 ± 16 Ma) and consists of fine clastic metasediments at the base and chemical sediments, including banded iron formations (BIFs), on the top, corresponding to the Meloso and Serra do Sapo formations, respectively, and correlating with the pre-Espinhaço Costa Sena Group. The SSG represents sedimentary deposition on an epicontinental-epeiric, slow downwarping sag basin with little tectonic activity.The younger Serra de São José Group (SJG) is separated from the older SSG by an erosional unconformity and was deposited in a tectonically active continental rift-basin in the early stages of the opening of the Espinhaço Trough. The Serra do São José sediments stretch along the north-south axis of the rift and comprise a complete cycle of transgressive sedimentary deposits, which were subdivided, from base to top, into the Lapão, Itapanhoacanga, Jacém and Canjica formations. The Itapanhoacanga Formation has a maximum depositional age of 1666 ± 32 Ma (Statherian), which coincides with the maximum depositional age (i.e., 1683 ± 11 Ma) of the São João da Chapada Formation, one of the Espinhaço Supergroup's basal units. The Serra de São José Rift and the Espinhaço Rift likely represent the same system, with basal units that are facies variations of the same sequence.The supracrustal rocks have undergone two stages of deformation during the west-verging Brasiliano orogeny that affected the eastern margin of the São Francisco Craton and generated a regional-scale, foreland N-S trending fold-thrust belt, which partially involved the crystalline basement. Thrust faults have segmented the terrain into a large number of tectonic blocks, where the stratigraphic sequence was nevertheless well preserved
    corecore