3 research outputs found

    Diagnostic synthétique pour la spectroscopie des plasmas de fusion par confinement magnétique

    No full text
    Dans cette thèse, un outil numérique a été élaboré en combinant un code d’élargissement Stark avec un code développé pour le calcul du continuum de recombinaison (transitions libre-lié et libre-libre). L’outil permet de modéliser des spectres d’émission complet de la série Balmer de l’hydrogène/deutérium pour des plasmas de divertors de tokamaks en particulier les plasmas recombinants (détachés). En plus d’élargir les raies, l’environnement plasma abaisse le potentiel d’ionisation des atomes induisant un avancement du continuum. Ces effets statistiques du plasma sont pris en compte avec l’approche du facteur de dissolution des raies dans le continuum. Dans cette approche, au delà d’un niveau critique dépendant des paramètres plasma, les niveaux liés sont considérés comme des états libres. Cette approche a été implémentée en étendant le continuum au-delà de la limite théorique de la série et en transformant des états liés en états libres. Pour simplifier, au-delà de la limite d’Inglis-Teller, les profils des raies Balmer sont extrapolés de celui de la dernière raie résolue. Pour les faibles densités électroniques, un modèle collisionnel-radiatif a été utilisé pour le calcul des intensités. L’outil a été testé via la comparaison avec un spectre expérimental et a été utilisé pour prédire des spectres synthétiques pour WEST en utilisant des distributions spatiales de la densité de neutres et des paramètres plasma simulés par le code de transport SOLEDGE2D-EIRENE le long des lignes de visée. Cette approche des diagnostics synthétiques de la spectroscopie des plasmas peut être facilement élargie pour des prédictions efficaces des futures machines comme ITER et DEMOIn this thesis, a numerical tool is elaborated by combining a Stark lineshape code with another code developed for the calculation of the recombination continuum due to bound-free and free-free transitions. The tool is intended to model whole Balmer spectra emitted by hydrogen or deuterium atoms for tokamak divertor plasma conditions with a focus on recombining plasmas (detachment regime). In addition to Stark line broadening, the plasma environment affects hydrogen atoms by lowering the ionization potential leading to the advance of the continuum. For hydrogen emission, these statistical plasma effects are retained using the dissolution factor approach which allows the modeling of the gradual line merging into the continuum. In this approach, bound levels are considered as free levels beyond a critical level depending on the plasma parameters. The approach is implemented by extending the continuum beyond the theoretical series limit and transforming bound levels to free ones. For simplicity, beyonf the Inglis-Teller limit, the profiles of the Balmer lines are extrapolated from that of the last resolved line. For low electron densities, the line intensities are calculated using a collisional-radiative model. The numerical tool was checked by comparison with an experimental spectrum from literature. The numerical tool was applied to predict synthetic spectra for WEST using spatial distributions of the hydrogen density and of the plasma parameters simulated along viewing chords by the transport code SOLEDGE2D-EIRENE. This approach of synthetic diagnostics of plasma spectroscopy, can easily be extended for efficient predictions for future fusion devices like ITER and DEM

    Broadening of the Neutral Helium 492 nm Line in a Corona Discharge: Code Comparisons and Data Fitting

    No full text
    Passive plasma spectroscopy is a well-established non-intrusive diagnostic technique. Depending on the emitter and its environment which determine the dominant interactions and effects governing emission line shapes, passive spectroscopy allows the determination of electron densities, emitter and perturber temperatures, as well as other quantities like relative abundances. However, using spectroscopy requires appropriate line shape codes retaining all the physical effects governing the emission line profiles. This is required for line shape code developers to continuously correct or improve them to increase their accuracy when applied for diagnostics. This is exactly the aim expected from code–code and code–data comparisons. In this context, the He i 492 nm line emitted in a helium corona discharge at room temperature represents an ideal case since its profile results from several broadening mechanisms: Stark, Doppler, resonance, and van der Waals. The importance of each broadening mechanism depends on the plasma parameters. Here the profiles of the He i 492 nm in a helium plasma computed by various codes are compared for a selected set of plasma parameters. In addition, preliminary results related to plasma parameter determination using an experimental spectrum from a helium corona discharge at atmospheric pressure, are presented

    H-β Line in a Corona Helium Plasma: A Multi-Code Line Shape Comparison

    No full text
    Many spectroscopic diagnostics are routinely used as techniques to infer the plasma parameters from line emission spectra, but their accuracy depends on the numerical model or code used for the fitting process. However, the validation of a line shape code requires some steps: the comparison of the line shape code with other similar codes for some academic (simple) cases and then for more complex ones, the comparison of the fitting parameters obtained from the best fit of the experimental spectra with those obtained with other diagnostic techniques, and/or the comparison of the fitting parameters obtained by different codes to fit the same experimental data. Here we compare the profiles of the hydrogen Balmer β line in helium plasma computed by five codes for a selected set of plasma parameters and we report on the plasma parameters inferred by each of them from the fitting to a number of experimental spectra measured in a helium corona discharge where the pressure was in the range of 1–5 bars
    corecore