78 research outputs found

    Embryo Culture, In Vitro Propagation, and Molecular Identification for Advanced Olive Breeding Programs

    Get PDF
    The high biodiversity of the olive tree is an important opportunity to develop sustainable plans to control Xylella fastidiosa (X) through breeding programs. Olive tree breeding activities have been limited due to various features of this species including the long time required for seed germination caused by the inhibition effect of the woody endocarp, the seed integument, and the endosperm. Starting from F1 seeds by cross-breeding, the embryo culture was compared with traditional seed germination, evaluating the effectiveness of in vitro multiplication of the plantlets for large-scale production. The isolated embryos were established on a new medium based on Rugini ‘84 macroelements, Murashige & Skoog ‘62 microelements, with Nitsch J. P. & Nitsch C. ‘69 vitamine and subcultured on Leva MSM modified. The results obtained confirmed that in vitro culture of olive embryos is a valid tool for increasing the percentage and speed of germination, helping to reduce the time of the olive breeding programs, offering the possibility to effectively propagate plantlets for further experiments

    A molecular and histological characterization of cartilage from patients with Morquio syndrome

    Get PDF
    SummaryObjectiveTo investigate the gene expression profile and the histological aspects of articular cartilage of patients affected by Morquio syndrome, a lysosomal storage disease characterized by the accumulation of glycosaminoglycans within the cells which result in abnormal formation and growth of the skeletal system.MethodArticular cartilage samples were obtained from the femoral condyle of two siblings with Morquio syndrome during surgery performed to treat valgus knee. As controls, four biopsy samples of healthy cartilage were obtained from four different male multiorgan donors. A Real-Time Polymerase Chain reaction (RT-PCR) analysis was performed to evaluate the expression of type I and II collagens and aggrecan mRNAs. Histological and immunohistochemical analyses for some matrix proteins were carried out on paraffin embedded sections.ResultsType I collagen mRNA mean level was higher in the samples of patients with Morquio syndrome compared to controls. Type II collagen and aggrecan mRNAs' mean expression was instead lower. The morphological appearance of the cartilage showed a poorly organized tissue structure with not homogeneously distributed cells that were larger compared to normal chondrocytes due to the presence inside the vacuoles of proteoglycans which were not metabolized. Chondrocytes were negative for collagen II immunostaining while the extracellular matrix was weakly positive. Collagen type I immunostaining was positive at cellular level. Keratan sulfate showed diffuse positivity and chondroitin-6-sulfate was present throughout the cartilaginous thickness.ConclusionIn cartilage of patients with Morquio syndrome, a low expression of collagen type II and a high expression of collagen type I both at protein and molecular levels are evidentiated. This finding could give evidence of the reduction in ankle and knee joint movement observable in these patients

    Tissue engineering applications: cartilage lesions repair by the use of autologous chondrocytes

    No full text
    Promising new therapies based on tissue engineering have been recently developed for cartilage repair. The association of biomaterials with autologous chondrocytes expanded in vitro can represent a useful tool to regenerate this tissue. The scaffolds utilised in such therapeutical applications should provide a pre-formed three-dimensional shape, prevent cells from floating out of the defect, have sufficient mechanical strength, facilitate uniform spread of cells and stimulate the phenotype of transplanted cells. Hyaff®-11 is a hyaluronic-acid based biodegradable polymer, that has been shown to provide successful cell carrier for tissue-engineered repair. From our findings we can state that human chondrocytes seeded on Hyaff®-11 are able to maintain in vitro the characteristic of differentiated cells, expressing and producing collagen type II and aggrecan which are the main markers of cartilage phenotype, down-regulating collagen type I. Moreover, it seems to be a useful scaffold for cartilage repair both in animal models and clinical trials in humans, favouring the formation of a hyaline-like tissue. In the light of these data, we can hypothesise, for the future, the use of autologous chondrocyte transplantation together with gene therapy as a treatment for rheumatic diseases such as osteoarthritis
    corecore