27 research outputs found

    The diagnostic accuracy of high b-value diffusion- and T2-weighted imaging for the detection of prostate cancer: a meta-analysis

    Get PDF
    Purpose: This study aims to investigate the role of diffusion-weighted imaging (DWI) and T2-weighted imaging (T2WI) in combination for the detection of prostate cancer, specifically assessing the role of high b-values (> 1000 s/mm2), with a systematic review and meta-analysis of the existing published data.  Methods: The electronic databases MEDLINE, EMBASE, and OpenSIGLE were searched between inception and September 1, 2017. Eligible studies were those that reported the sensitivity and specificity of DWI and T2WI for the diagnosis of prostate cancer by visual assessment using a histopathologic reference standard. The QUADAS-2 critical appraisal tool was used to assess the quality of included studies. A meta-analysis with pooling of sensitivity, specificity, likelihood, and diagnostic odds ratios was undertaken, and a summary receiver-operating characteristics (sROC) curve was constructed. Predetermined subgroup analysis was also performed.  Results: Thirty-three studies were included in the final analysis, evaluating 2949 patients. The pooled sensitivity and specificity were 0.69 (95% CI 0.68–0.69) and 0.84 (95% CI 0.83–0.85), respectively, and the sROC AUC was 0.84 (95% CI 0.81–0.87). Subgroup analysis showed significantly better sensitivity with high b-values (> 1000 s/mm2). There was high statistical heterogeneity between studies.  Conclusion: The diagnostic accuracy of combined DWI and T2WI is good with high b-values (> 1000 s/mm2) seeming to improve overall sensitivity while maintaining specificity. However, further large-scale studies specifically looking at b-value choice are required before a categorical recommendation can be made

    Learning From History About Reducing Infant Mortality: Contrasting the Centrality of Structural Interventions to Early 20th‐Century Successes in the United States to Their Neglect in Current Global Initiatives

    Get PDF

    3T multiparametric MR imaging, PIRADSv2-based detection of index prostate cancer lesions in the transition zone and the peripheral zone using whole mount histopathology as reference standard

    No full text
    PurposeTo evaluate 3T mpMRI characteristics of transition zone and peripheral zone index prostate cancer lesions stratified by Gleason Score and PI-RADSv2 with whole mount histopathology correlation.MethodsAn institution review board-approved, HIPAA-compliant single-arm observational study of 425 consecutive men with 3T mpMRI prior to radical prostatectomy from December 2009 to October 2016 was performed. A genitourinary radiologist and a genitourinary pathologist matched all lesions detected on whole mount histopathology with lesions concordant for size and location on 3T mpMRI. Differences in clinical, MRI parameters, and histopathology between transition zone and peripheral zone were determined and analyzed with χ2 and Mann-Whitney U test. AUC was measured.Results3T mpMRI detected 248/323 (76.7%) index lesions in peripheral zone and 75/323 (23.2%) in transition zone. Transition zone prostate cancer had higher median prostate-specific antigen (p = 0.001), larger tumor on 3T mpMRI (p = 0.001), lower proportions of PI-RADSv2 category 4 and 5 (p < 0.001), and lower pathological stage (p = 0.055) compared to peripheral zone prostate cancer. No significant differences were detected in prostate-specific antigen density, preoperative biopsy, and pathology Gleason Scores. After adjusting for significant variables from univariate analysis including prostate volume, tumor volume, prostate-specific antigen, PI-RADSv2 category, AUC for predicting clinically significant tumor in transition zone and peripheral zone were 0.80 and 0.72, respectively (p = 0.36).ConclusionsThe diagnostic performance of PI-RADSv2 for clinically significant transition and peripheral zone prostate cancer was similar. However, there was a lower portion of PI-RADSv2 4 and 5 lesions in transition zone compared to peripheral zone
    corecore