523 research outputs found
Improved tests of Local Position Invariance using 87Rb and 133Cs fountains
We report tests of local position invariance based on measurements of the
ratio of the ground state hyperfine frequencies of 133Cs and 87Rb in
laser-cooled atomic fountain clocks. Measurements extending over 14 years set a
stringent limit to a possible variation with time of this ratio: d
ln(nu_Rb/nu_Cs)/dt=(-1.39 +/- 0.91)x 10-16 yr-1. This improves by a factor of
7.7 over our previous report (H. Marion et al., Phys. Rev. Lett. 90, 150801
(2003)). Our measurements also set the first limit to a fractional variation of
the Rb/Cs ratio with gravitational potential at the level of c^2 d
ln(nu_Rb/nu_Cs)/dU=(0.11 +/- 1.04)x 10^-6, providing a new stringent
differential redshift test. The above limits equivalently apply to the
fractional variation of the quantity alpha^{-0.49}x(g_Rb/g_Cs), which involves
the fine structure constant alpha and the ratio of the nuclear g-factors of the
two alkalis. The link with variations of the light quark mass is also presented
together with a global analysis combining with other available highly accurate
clock comparisons.Comment: 5 pages, 3 figures, 3 tables, 34 reference
Dynamics of a single vortex line in a Bose-Einstein condensate
We study experimentally the line of a single quantized vortex in a rotating
prolate Bose-Einstein condensate confined by a harmonic potential. In agreement
with predictions, we find that the vortex line is in most cases curved at the
ends. We monitor the vortex line leaving the condensate. Its length is measured
as a function of time and temperature. For a low temperature, the survival time
can be as large as 10 seconds. The length of the line and its deviation from
the center of the trap are related to the angular momentum per particle along
the condensate axis.Comment: 4 pages, 4 figures, submitted to PR
Microwave-dressed state-selective potentials for atom interferometry
International audienceWe propose a novel and robust technique to realize a beam splitter for trapped Bose–Einstein condensates (BECs). The scheme relies on the possibility of producing different potentials simultaneously for two internal atomic states. The atoms are coherently transferred, via a Rabi coupling between the two long-lived internal states, from a single well potential to a double-well. We present numerical simulations supporting our proposal and confirming excellent efficiency and fidelity of the transfer process with realistic numbers for a BEC of 87 Rb. We discuss the experimental implementation by suggesting state-selective microwave (MW) potentials as an ideal tool to be exploited for magnetically trapped atoms. The working principles of this technique are tested on our atom chip device which features an integrated coplanar MW guide. In particular, the first realization of a double-well potential by using a MW dressing field is reported. Experimental results are presented together with numerical simulations, showing good agreement. Simultaneous and independent control on the external potentials is also demonstrated in the two Rubidium clock states. The transfer between the two states, featuring respectively a single and a double-well, is characterized and it is used to measure the energy spectrum of the atoms in the double-well. Our results show that the spatial overlap between the two states is crucial to ensure the functioning of the beamsplitter. Even though this condition could not be achieved in our current setup, the proposed technique can be realized with current state-of-the-art devices being particularly well suited for atom chip experiments. We anticipate applications in quantum enhanced interferometry
Progress in Atomic Fountains at LNE-SYRTE
We give an overview of the work done with the Laboratoire National de
M\'etrologie et d'Essais-Syst\`emes de R\'ef\'erence Temps-Espace (LNE-SYRTE)
fountain ensemble during the last five years. After a description of the clock
ensemble, comprising three fountains, FO1, FO2, and FOM, and the newest
developments, we review recent studies of several systematic frequency shifts.
This includes the distributed cavity phase shift, which we evaluate for the FO1
and FOM fountains, applying the techniques of our recent work on FO2. We also
report calculations of the microwave lensing frequency shift for the three
fountains, review the status of the blackbody radiation shift, and summarize
recent experimental work to control microwave leakage and spurious phase
perturbations. We give current accuracy budgets. We also describe several
applications in time and frequency metrology: fountain comparisons,
calibrations of the international atomic time, secondary representation of the
SI second based on the 87Rb hyperfine frequency, absolute measurements of
optical frequencies, tests of the T2L2 satellite laser link, and review
fundamental physics applications of the LNE-SYRTE fountain ensemble. Finally,
we give a summary of the tests of the PHARAO cold atom space clock performed
using the FOM transportable fountain.Comment: 19 pages, 12 figures, 5 tables, 126 reference
Extended coherence time on the clock transition of optically trapped Rubidium
Optically trapped ensembles are of crucial importance for frequency
measurements and quantum memories, but generally suffer from strong dephasing
due to inhomogeneous density and light shifts. We demonstrate a drastic
increase of the coherence time to 21 s on the magnetic field insensitive clock
transition of Rb-87 by applying the recently discovered spin self-rephasing.
This result confirms the general nature of this new mechanism and thus shows
its applicability in atom clocks and quantum memories. A systematic
investigation of all relevant frequency shifts and noise contributions yields a
stability of 2.4E-11 x tau^(-1/2), where tau is the integration time in
seconds. Based on a set of technical improvements, the presented frequency
standard is predicted to rival the stability of microwave fountain clocks in a
potentially much more compact setup.Comment: 5 pages, 4 figure
Spin self-rephasing and very long coherence times in a trapped atomic ensemble
We perform Ramsey spectroscopy on the ground state of ultra-cold 87Rb atoms
magnetically trapped on a chip in the Knudsen regime. Field inhomogeneities
over the sample should limit the 1/e contrast decay time to about 3 s, while
decay times of 58 s are actually observed. We explain this surprising result by
a spin self-rephasing mechanism induced by the identical spin rotation effect
originating from particle indistinguishability. We propose a theory of this
synchronization mechanism and obtain good agreement with the experimental
observations. The effect is general and susceptible to appear in other physical
systems.Comment: Revised version; improved description of the theoretical treatmen
Atomic fountains and optical clocks at SYRTE: status and perspectives
In this article, we report on the work done with the LNE-SYRTE atomic clock
ensemble during the last 10 years. We cover progress made in atomic fountains
and in their application to timekeeping. We also cover the development of
optical lattice clocks based on strontium and on mercury. We report on tests of
fundamental physical laws made with these highly accurate atomic clocks. We
also report on work relevant to a future possible redefinition of the SI
second
- …