18,069 research outputs found

    Application of remote sensing in estimating evapotranspiration in the Platte river basin

    Get PDF
    A 'resistance model' and a mass transport model for estimating evapotranspiration (ET) were tested on large fields of naturally subirrigated alfalfa. Both models make use of crop canopy temperature data. Temperature data were obtained with an IR thermometer and with leaf thermocouples. A Bowen ratio-energy balance (BREB) model, adjusted to account for underestimation of ET during periods of strong sensible heat advection, was used as the standard against which the resistance and mass transport models were compared. Daily estimates by the resistance model were within 10% of estimates made by the BREB model. Daily estimates by the mass transport model did not agree quite as well. Performance was good on clear and cloudy days and also during periods of non-advection and strong advection of sensible heat. The performance of the mass transport and resistance models was less satisfactory for estimation of fluxes of latent heat for short term periods. Both models tended to overestimate at low LE fluxes

    Identification and evaluation of linear damping models in beam vibrations

    Get PDF
    Sensitive method, identifying effective damping mechanisms, involves comparing experimentally determined ratio of first to second mode magnification factors related to common point on beam. Cluster size has little effect on frequencies of elements, magnification factor decreases with cluster size, and viscous and stress damping are dominant damping mechanisms

    Unravelling the Mysteries of the Leo Ring: An Absorption Line Study of an Unusual Gas Cloud

    Full text link
    Since the 1980's discovery of the large (2x10^9 Msun) intergalactic cloud known as the Leo Ring, this object has been the center of a lively debate about its origin. Determining the origin of this object is still important as we develop a deeper understanding of the accretion and feedback processes that shape galaxy evolution. We present HST/COS observations of three sightlines near the Ring, two of which penetrate the high column density neutral hydrogen gas visible in 21 cm observations of the object. These observations provide the first direct measurement of the metallicity of the gas in the Ring, an important clue to its origins. Our best estimate of the metallicity of the ring is ~10% Zsun, higher than expected for primordial gas but lower than expected from an interaction. We discuss possible modifications to the interaction and primordial gas scenarios that would be consistent with this metallicity measurement.Comment: 11 pages, 7 figures, accepted Ap

    Exotic Axions

    Full text link
    We show that axion phenomenology may be significantly different than conventionally assumed in theories which exhibit late phase transitions (below the QCD scale). In such theories one can find multiple pseudoscalars with axion-like couplings to matter, including a string scale axion, whose decay constant far exceeds the conventional cosmological bound. Such theories have several dark matter candidates.Comment: 5 pages, 1 figure, References adde

    The Diverse Infrared Properties of a Complete Sample of Star-Forming Dwarf Galaxies

    Full text link
    We present mid-infrared Spitzer Space Telescope observations of a complete sample of star-forming dwarf galaxies selected from the KPNO International Spectroscopic Survey. The galaxies span a wide range in mid-infrared properties. Contrary to expectations, some of the galaxies emit strongly at 8 micron indicating the presence of hot dust and/or PAHs. The ratio of this mid-infrared dust emission to the stellar emission is compared with the galaxies' luminosity, star-formation rate, metallicity, and optical reddening. We find that the strength of the 8.0 micron dust emission to the stellar emission ratio is more strongly correlated with the star-formation rate than it is with the metallicity or the optical reddening in these systems. Nonetheless, there is a correlation between the 8.0 micron luminosity and metallicity. The slope of this luminosity-metallicity correlation is shallower than corresponding ones in the B-band and 3.6 micron. The precise nature of the 8.0 micron emission seen in these galaxies (i.e., PAH versus hot dust or some combination of the two) will require future study, including deep mid-IR spectroscopy.Comment: 14 pages, accepted Ap

    Quantum Equivalence of Massive Antisymmetric Tensor Field Models in Curved Space

    Full text link
    We study the effective actions for massive rank-2 and rank-3 antisymmetric tensor field models in curved space-time. These models are classically equivalent to massive vector field and massive scalar field with minimal coupling to gravity respectively. We prove that effective action for massive rank-2 antisymmetric tensor field is exactly equal to one for massive vector field and effective action for massive rank-3 antisymmetric tensor field is exactly equal to one for massive scalar field. Prove is based on an identity for mass-dependent zeta-functions associated with Laplacians acting on pp-forms.Comment: 8 pages, REVTeX fil
    corecore