23,117 research outputs found

    Nd:Glass-Raman laser for water vapor dial

    Get PDF
    A tunable solid-state Raman shifted laser which was used in a water vapor Differential Absorption Lidar (DIAL) system at 9400 A is described. The DIAL transmitter is based on a tunable glass laser operating at 1.06 microns, a hydrogen Raman cell to shift the radiation to 1.88 microns, and a frequency doubling crystal. The results of measurements which characterize the output of the laser with respect to optimization of optical configuration and of Raman parameters were reported. The DIAL system was also described and preliminary atmospheric returns shown

    A Farm Bill to Help Farmers Weather Climate Change

    Get PDF
    The Farm Bill has an enormous impact on climate change. Greenhouse gas emissions from agriculture account for almost 10 percent of total U.S. emissions and up to a quarter of all emissions globally. The Farm Bill encourages the use of carbon-intensive agricultural practices and products responsible for these emissions, but nonetheless offers several opportunities to quickly expand carbon sequestration, making it a critical piece of climate legislation. This essay will examine the climate impact of the Farm Bill, focusing on the commodity, conservation, and crop insurance programs. It then proposes politically feasible changes to these programs aimed at minimizing agricultural greenhouse gas emissions and maximizing carbon storage. The essay concludes with an ambitious, long-term set of Farm Bill proposals designed to transform the U.S. agricultural sector into a carbon sink

    Ultralow threshold graded-index separate-confinement heterostructure single quantum well (Al,Ga)As lasers

    Get PDF
    Broad area graded‐index separate‐confinement heterostructure single quantum well lasers grown by molecular‐beam epitaxy (MBE) with threshold current density as low as 93 A/cm^2 (520 μm long) have been fabricated. Buried lasers formed from similarly structured MBE material with liquid phase epitaxy regrowth had threshold currents at submilliampere levels when high reflectivity coatings were applied to the end facets. A cw threshold current of 0.55 mA was obtained for a laser with facet reflectivities of ∼80%, a cavity length of 120 μm, and an active region stripe width of 1 μm. These devices driven directly with logic level signals have switch‐on delays <50 ps without any current prebias. Such lasers permit fully on–off switching while at the same time obviating the need for bias monitoring and feedback control

    Surgery and the Spectrum of the Dirac Operator

    Full text link
    We show that for generic Riemannian metrics on a simply-connected closed spin manifold of dimension at least 5 the dimension of the space of harmonic spinors is no larger than it must be by the index theorem. The same result holds for periodic fundamental groups of odd order. The proof is based on a surgery theorem for the Dirac spectrum which says that if one performs surgery of codimension at least 3 on a closed Riemannian spin manifold, then the Dirac spectrum changes arbitrarily little provided the metric on the manifold after surgery is chosen properly.Comment: 23 pages, 4 figures, to appear in J. Reine Angew. Mat

    Adaptive mesh refinement with spectral accuracy for magnetohydrodynamics in two space dimensions

    Get PDF
    We examine the effect of accuracy of high-order spectral element methods, with or without adaptive mesh refinement (AMR), in the context of a classical configuration of magnetic reconnection in two space dimensions, the so-called Orszag-Tang vortex made up of a magnetic X-point centered on a stagnation point of the velocity. A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate this problem. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described elsewhere in the fluid context [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys. 215, 59-80 (2006)]; the code allows both statically refined and dynamically refined grids. Tests of the algorithm using analytic solutions are described, and comparisons of the Orszag-Tang solutions with pseudo-spectral computations are performed. We demonstrate for moderate Reynolds numbers that the algorithms using both static and refined grids reproduce the pseudo--spectral solutions quite well. We show that low-order truncation--even with a comparable number of global degrees of freedom--fails to correctly model some strong (sup--norm) quantities in this problem, even though it satisfies adequately the weak (integrated) balance diagnostics.Comment: 19 pages, 10 figures, 1 table. Submitted to New Journal of Physic

    Discordance of Species Trees with Their Most Likely Gene Trees

    Get PDF
    Because of the stochastic way in which lineages sort during speciation, gene trees may differ in topology from each other and from species trees. Surprisingly, assuming that genetic lineages follow a coalescent model of within-species evolution, we find that for any species tree topology with five or more species, there exist branch lengths for which gene tree discordance is so common that the most likely gene tree topology to evolve along the branches of a species tree differs from the species phylogeny. This counterintuitive result implies that in combining data on multiple loci, the straightforward procedure of using the most frequently observed gene tree topology as an estimate of the species tree topology can be asymptotically guaranteed to produce an incorrect estimate. We conclude with suggestions that can aid in overcoming this new obstacle to accurate genomic inference of species phylogenies

    Self-similar structure and experimental signatures of suprathermal ion distribution in inertial confinement fusion implosions

    Get PDF
    The distribution function of suprathermal ions is found to be self-similar under conditions relevant to inertial confinement fusion hot-spots. By utilizing this feature, interference between the hydro-instabilities and kinetic effects is for the first time assessed quantitatively to find that the instabilities substantially aggravate the fusion reactivity reduction. The ion tail depletion is also shown to lower the experimentally inferred ion temperature, a novel kinetic effect that may explain the discrepancy between the exploding pusher experiments and rad-hydro simulations and contribute to the observation that temperature inferred from DD reaction products is lower than from DT at National Ignition Facility.Comment: Revised version accepted for publication in PRL. "Copyright (2015) by the American Physical Society.
    corecore